Modeling bypass transition within $k-\varepsilon$ approach

 pdf (390K)  / Annotation

List of references:

  1. А. А. Аксенов, С. В. Жлуктов, С. А. Платов. Численное моделирование ламинарно-турбулентного перехода на корпусе судна в программном комплексе FlowVision // Судостроение. — 2013. — № 4. — С. 58–60.
  2. А. В. Бойко, Ю. М. Нечепуренко. Технология численного анализа влияния оребрения на временную устойчивость плоских течений // Журнал Вычислительной Математики и Математической Физики. — 2010. — Т. 50, № 6. — С. 1109–1125.
  3. А. В. Гарбарук, М. Х. Стрелец, М. Л. Шур. Моделирование турбулентности в расчетах сложных течений. Учебное пособие. — Санкт-Петербург: Издательство Политехнического Университета, 2012. — 88 с.
  4. В. Н. Жигулёв, А. М. Тумин. Возникновение турбулентности. Динамическая теория возбуждения и развития неустойчивостей в пограничных слоях. — Новосибирск: Наука, Сибирское отделение, 1987. — 282 с.
  5. В. П. Семёнов. Основы механики жидкости. Учебное пособие. — М: ФЛИНТ, 2013. — 375 с.
  6. Г. Шлихтинг. Теория пограничного слоя. — М: Наука, 1974. — 712 с.
  7. K. Abe, T. Kondoh, Y. Nagano. A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching flows-I. Flow Field Calculation // Int. Journal of Heat and Mass Transfer. — 1994. — V. 37, no. 1. — P. 139–151. — DOI: 10.1016/0017-9310(94)90168-6. — ads: 1994IJHMT..37..139A.
  8. S. Abu Darag, V. Uruba, V. Horak. An Evaluation of Novel Integral Scheme for Calculations of Transitional Boundary Layers / Colloquium FLUID DYNAMICS, Institute of Thermomechanics AS CR. — Prague: Czech Society for Mechanics, the ERCOFTAC Czech Pilot Centre, 2011. — 6 p.
  9. J. Babajee. Detailed Numerical Characterization of the Separation-Induced Transition, Including Bursting, in a Low-Pressure Turbine Environment. — 2014. — 259 p. — Doctoral thesis, ISBN 978-2-87516-068-3, Published by the von Karman Institute for Fluid Dynamics with permission.
  10. G. K. Batchelor, A. A. Townsend. Decay of isotropic turbulence in the initial period // Proceedings of Royal Society. — London, 1948. — V. A 193. — P. 539–558. — DOI: 10.1098/rspa.1948.0061. — ads: 1948RSPSA.193..539B.
  11. K.-Y. Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model // AIAA Journal. — 1982. — V. 20, no. 1. — P. 33–38. — DOI: 10.2514/3.51043. — ads: 1982AIAAJ..20...33C.
  12. L. F. Crabtree, R. L. Dommett, J. G. Woodley, R. A. E. Farnborough. Estimation of Heat Transfer to Flat Plates, Cones and Blunt Bodies / Aeronautical Research Council Reports and Memoranda. — London: Her Majesty’s Stationery office, 1970. — 59 p.
  13. L. Cutrone, P. De Palma, G. Pascazio, M. Napolitano. An evaluation of bypass transition models for turbomachinery flows // International Journal of Heat and Fluid Flow. — 2007. — V. 28. — P. 161–177. — DOI: 10.1016/j.ijheatfluidflow.2006.02.031.
  14. D. Di Pasquale, A. Ronay, S. J. Garrett. A selective review of CFD transition models / AIAA Paper No. 2009–3812, 39th AIAA Fluid Dynamics Conference, 22–25 June 2009, San Antonio, Texas. — 10 p.
  15. R. B. Langtry, F. R. Menter. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes // AIAA Journal. — 2009. — V. 47, no. 12. — P. 2894–2906. — DOI: 10.2514/1.42362. — ads: 2009AIAAJ..47.2894L.
  16. F. S. Lien, W. L. Chen, M. A. Leschziner. Low Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations / Engineering Turbulence Modelling and Measurements 3. — Elsevier, 1996. — P. 91–100.
  17. R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines // Journal of Turbomachinery. — 1991. — V. 113. — P. 509–537. — DOI: 10.1115/1.2929110.
  18. W.D. McComb. The Physics of Fluid Turbulence / Oxford Engineering Science Series – 25. — Oxford: Clarendon Press, 1992. — 572 p.
  19. F. R. Menter, M. Kuntz, R. Langtry. Ten Years of Industrial Experience with the SST Turbulence Model / Turbulence, Heat and Mass Transfer 4. — Begell House, Inc, 2003. — P. 625–632. — K. Hanjalic, Y. Nagano, and M. Tummers.
  20. T. S. Park, H. J. Sung. A nonllinear low-Reynolds-number k- model for turbulent separated and reattaching flows – I. Flow field computations // Int. J. Heat Mass Transfer. — 1995. — V. 38, no. 14. — P. 2657–2666. — DOI: 10.1016/0017-9310(95)00009-X.
  21. S. Platov, I. Golovnev. The critical analysis of models of turbulence of laminar-turbulent transition and a role of diffusion by pressure fluctuations / 10th International Conference on fluid Control, Measurements, and Visualisation, August 17–21, 2009. — 11 p.
  22. M. M. Rahman, T. Siikonen. Near-wall turbulence modelling with enhanced dissipation // International Journal for Numerical Methods in Fluids. — 2003. — V. 42. — P. 979–997. — DOI: 10.1002/fld.569. — ads: 2003IJNMF..42..979R.
  23. A. M. Savill. A Synthesis of T3 Test Case Predictions / Numerical Simulation of Unsteady Flows and Transition to Turbulence. — New York: C.U.P, 1992. — P. 404–442. — O. Pironneau, W. Rodi, I. L. Ryhming, A. M. Savill, and T. V. Truong.
  24. D. C. Wilcox. Turbulence modeling for CFD. — DCW Industries, Inc, 1994. — 460 p.

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the List of Russian peer-reviewed journals publishing the main research results of PhD and doctoral dissertations.

International Interdisciplinary Conference "Mathematics. Computing. Education"

The journal is included in the RSCI

Indexed in Scopus