A modeling approach to estimate the gross and net primary production of forest ecosystems as a function of the fraction of absorbed photosynthetically active radiation

 pdf (685K)  / Annotation

List of references:

  1. С. А. Барталев, В. А. Егоров, Д. В. Ершов и др. Спутниковое картографирование растительного покрова России по данным спектрорадиометра MODIS // Современные проблемы дистанционного зондирования Земли из космоса. — 2011. — Т. 8, № 4. — С. 285–302.
  2. А. В. Ольчев, Ю. А. Курбатова, А. В. Варлагин и др. Модельный подход для описания переноса СО2 между лесными экосистемами и атмосферой // Лесоведение. — 2008. — № 3. — С. 3–13.
  3. А. В. Ольчев, Ю. А. Курбатова, Ф. А. Татаринов и др. Оценка первичной валовой и чистой продуктивности еловых лесов Центрально-Европейской части России с помощью полевых измерений и математической модели // Успехи современной биологии. — 2009. — № 6. — С. 565–577.
  4. А. В. Ольчев. Потоки СО2 и Н2О в лесных экосистемах в условиях изменяющегося климата (оценка с применением математических моделей). — М: Генезис, 2015. — 51 с. — Автореферат диссертации на соискание ученой степени доктора биологических наук.
  5. S. von Caemmerer. Biochemical Models of Leaf Photosynthesis. — Canberra, Australia: CSIRO Publishing, 2000.
  6. D. G. G. De Pury, G. D. Farquhar. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models // Plant, Cell & Environment. — 1997. — V. 20 (5). — P. 537–557. — DOI: 10.1111/j.1365-3040.1997.00094.x.
  7. E. Falge, D. Baldocchi, J. Tenhunen, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements // Agricultural and Forest Meteorology. — 2002. — V. 113. — P. 53–74. — DOI: 10.1016/S0168-1923(02)00102-8. — ads: 2002AgFM..113...53F.
  8. E. Falge, S. Reth, N. Brüggemann, et al. Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany // Ecological Modelling. — 2005. — V. 188 (2–4). — P. 174–216. — DOI: 10.1016/j.ecolmodel.2005.01.057.
  9. G. D. Farquhar, S. von Caemmerer, J. A. Berry. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species // Planta. — 1980. — V. 149. — P. 78–90. — DOI: 10.1007/BF00386231.
  10. F. A. Heinsch, M. S. Zhao, S. W. Running, et al. Evaluation of remote sensing based terrestrial productivity from MODIS using AmeriFlux tower eddy flux network observations // IEEE Transactions on Geoscience and Remote Sensing. — 2006. — V. 44. — P. 1908–1925. — DOI: 10.1109/TGRS.2005.853936. — ads: 2006ITGRS..44.1908H.
  11. A. Ibrom, C. Schütz, T. Tworek, et al. Eddy-correlation measurements of fluxes of CO2 and H2O above a spruce forest // Physics and Chemistry of the Earth. — 1996. — V. 21 (5–6). — P. 409–414. — DOI: 10.1016/S0079-1946(97)81133-0. — ads: 1996PCE....21..409I.
  12. A. Ibrom, A. Olchev, T. June, et al. Effects of land-use change on matter and energy exchange between ecosystems in the rain forest margin and the atmosphere / The stability of tropical rainforest margins: Linking ecological, economic and social constraints. — Berlin: Springer Verlag, 2007. — P. 463–492. — T. Tscharntke, C. Leuschner, M. Zeller, E. Guhardja, A. Bidin, Eds.
  13. A. Ibrom, A. Oltchev, T. June, et al. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia // Tree Physiology. — 2008. — V. 28 (4). — P. 499–508. — DOI: 10.1093/treephys/28.4.499.
  14. M. Monsi, T. Saeki. Ueber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion // Japanese Journal of Botany. — 1953. — V. 14. — P. 22–52.
  15. J. L. Monteith. Climate and the efficiency of crop production in Britain // Philosophical Transactions of the Royal Society. B: Biological Sciences. — 1977. — V. 281 (980). — P. 277–294. — DOI: 10.1098/rstb.1977.0140. — ads: 1977RSPTB.281..277M.
  16. A. Oltchev, J. Constantin, G. Gravenhorst, et al. Application of a six-layer SVAT model for simulation of evapotranspiration and water uptake in a spruce forest // Physics and Chemistry of the Earth. — 1996. — V. 21 (3). — P. 195–199. — DOI: 10.1016/S0079-1946(97)85584-X. — ads: 1996PCE....21..195O.
  17. A. Oltchev, J. Cermak, N. Nadezhdina, et al. Transpiration of a mixed forest stand: field measurements and simulation using SVAT models // Boreal Environmental Research. — 2002. — V. 7 (4). — P. 389–397.
  18. Olchev A., A. Ibrom, T. Ross, et al. A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere // Ecological Modelling. — 2008. — V. 212. — P. 122–130. — DOI: 10.1016/j.ecolmodel.2007.10.021.
  19. A. Olchev, A. Ibrom, O. Panferov, et al. Response of CO2 and H2O fluxes in a mountainous tropical rainforest in equatorial Indonesia to El Niño events // Biogeosciences. — 2015. — V. 12 (22). — P. 6655–6667. — DOI: 10.5194/bg-12-6655-2015. — ads: 2015BGeo...12.6655O.
  20. O. Panferov, I. Ibrom, H. Kreilein, et al. Between deforestation and climate impact: the Bariri Flux tower site in the primary montane rainforest of Central Sulawesi, Indonesia // The Newsletter of FLUXNET. — 2009. — V. 2 (3). — P. 17–19.
  21. A. Ruimy, G. Dedieu, B. Saugier. TURC: A diagnostic model of continental gross primary productivity and net primary productivity // Global Biogeochemical Cycles. — 1996. — V. 10. — P. 269–285. — DOI: 10.1029/96GB00349. — ads: 1996GBioC..10..269R.
  22. A. Ruimy, L. Kergoat, A. Bondeau, et al. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency // Global Change Biology. — 1999. — V. 5. — P. 56–64. — DOI: 10.1046/j.1365-2486.1999.00007.x.
  23. S. W. Running, P. E. Thornton, R. Nemani, et al. Global terrestrial gross and net primary productivity from the Earth Observing System / Methods in Ecosystem Science. — New York: Springer, 2000. — P. 44–57. — O. E. Sala, R. B. Jackson, H. A. Mooney, and R. W. Howarth, Eds.
  24. S. W. Running, R. R. Nemani, F. A. Heinsch, et al. A continuous satellite derived measure of global terrestrial primary production // BioScience. — 2004. — V. 54 (6). — P. 547–560. — DOI: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.
  25. T. D. Sharkey, C. J. Bernacchi, G. D. Farquhar, et al. Fitting photosynthetic carbon dioxide response curves for C–3 leaves // Plant, Cell & Environment. — 2007. — V. 30. — P. 1035–1040. — DOI: 10.1111/j.1365-3040.2007.01710.x.
  26. J. H. M. Thornley. Mathematical models in plant physiology. — New York: Academic Press, 1976.
  27. D. P. Turner, S. Urbanski, D. Bremer, et al. A cross-biome comparison of daily light use efficiency for gross primary production // Global Change Biology. — 2003. — V. 9. — P. 383–395. — DOI: 10.1046/j.1365-2486.2003.00573.x. — ads: 2003GCBio...9..383T.
  28. D. P. Turner, W. D. Ritts, W. B. Cohen, et al. Evaluation of MODIS NPP and GPP products across multiple biomes // Remote Sensing Environment. — 2006. — V. 102. — P. 282–292. — DOI: 10.1016/j.rse.2006.02.017. — ads: 2006RSEnv.102..282T.
  29. X. Xiao, D. Hollinger, J. Aber, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest // Remote Sensing of Environment. — 2004. — V. 89. — P. 519–534. — DOI: 10.1016/j.rse.2003.11.008. — ads: 2004RSEnv..89..519X.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"