Analysis of point model of fibrin polymerization

 pdf (455K)  / Annotation

List of references:

  1. Ф. И. Атауллаханов, Е. С. Лобанова, О. Л. Морозова, и. др. . Сложные режимы распространения возбуждения и самоорганизация в модели свертывания крови // Успехи физических наук. 2007. — Т. 177, № 1. — С. 87–104.
    • F. I. Ataullahanov, E. S. Lobanova, O. L. Morozova, et. al. . Slozhnye rezhimy rasprostraneniya vozbuzhdeniya i samoorganizaciya v modeli svertyvaniya krovi // Uspekhi fizicheskih nauk. 2007. — V. 177, no. 1. — P. 87–104. — in Russian.
    • F. I. Ataullakhanov, E. S. Lobanova, O. L. Morozova, et. al. . Intricate regimes of propagation of an excitation and selforganization in the blood clotting model // Physics-Uspekhi. 2007. — V. 50, no. 1. — P. 79–94.
  2. Ф. И. Атауллаханов, В. И. Зарницина, А. Ю. Кондратович, и. др. . Особый класс автоволн — автоволны с остановкой — определяет пространственную динамику свертывания крови // Успехи физических наук. 2002. — Т. 172, № 6. — С. 671–690.
    • F. I. Ataullahanov, V. I. Zarnicina, A. Yu. Kondratovich, et. al. . Osobyj klass avtovoln — avtovolny s ostanovkoj — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi // Uspekhi fizicheskih nauk. 2002. — V. 172, no. 6. — P. 671–690. — in Russian.
    • F. I. Ataullakhanov, V. I. Zarnitsyna, A. Yu. Kondratovich, et. al. . A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation // Physics-Uspekhi. 2002. — V. 45, no. 6. — P. 619–636.
  3. Н. Н. Баутин, Е. А. Леонтович. Методы и приемы качественного исследования динамических систем на плоскости. — М: Наука, 1990.
    • N. N. Bautin, Leontovich E. A.. Methods of qualitative investigations of dynamical systems on plane. — Moscow: Nauka, 1990.
  4. Л. Д. Ландау, Е. М. Лифшиц. Статистическая физика. — Т. 5. Ч. 1. — М: Наука, 1976.
    • L. D. Landau, E. M. Lifshits. Statistical Physics. — Moscow: Nauka, 1976.
  5. А. И. Лобанов. Полимеризация фибрина как волна фазового перехода. Математическая модель // Журнал вычислительной математики и математической физики. 2016. — Т. 56, № 6. — С. 1138–1148.
    • A. I. Lobanov. Polimerizaciya fibrina kak volna fazovogo perekhoda. Matematicheskaya model' // Computational Mathematics and Mathematical Physics. 2016. — V. 56, no. 6. — P. 1138–1148. — in Russian.
    • A. I. Lobanov. Fibrin polymerization as a phase transition wave: A mathematical model // Computational Mathematics and Mathematical Physics. 2016. — V. 56, no. 6. — P. 1118–1127.
  6. Э. Оран, Дж. Борис. Численное моделирование реагирующих потоков. — М: Мир, 1990.
    • E. Oran, J. Boris. Chislennoe modelirovanie reagiruschih potokov. — Moscow: Mir, 1990. — in Russian.
    • E. S. Oran, J. P. Boris. Numerical Simulation of Reactive Flow. — Elsivier Science Publ, 1987.
  7. А. С. Рухленко, К. Е. Злобина, Г. Т. Гурия. Гидродинамическая активация свертывания крови в стенозированных сосудах. Теоретический анализ // Компьютерные исследования и моделирование. 2012. — Т. 4, № 1. — С. 155–183. — DOI: 10.20537/2076-7633-2012-4-1-155-183
    • A. S. Rukhlenko, K. E. Zlobina, G. Th. Guria. Hydrodynamical activation of blood coagulation in stenosed vessels. Theoretical analysis // Computer Research and Modeling. 2012. — V. 4, no. 1. — P. 155–183. — in Russian.DOI: 10.20537/2076-7633-2012-4-1-155-183
  8. А. М. Шибеко. Моделирование формирования фибринового сгустка и исследование влияния потока крови на этот процесс. 2009. — 116 с. — Дис. канд. биол. наук: 03.00.02.
    • A. M. Shibeko. Numerical modeling of fibrin clot formation and influence of blood flow. — Moscow, 2009. — PhD Thesys. — in Russian.
  9. П. Д. Ширков. Оптимально затухающие системы с комплексными коэффициентами для жестких систем ОДУ // Математическое моделирование. 1992. — Т. 4, № 8. — С. 47–57.
    • Shirkov P. D.. Optimal dissipative schemes with complex coefficients for stiff ODE systems // Mathematical modeling. 1992. — V. 4, no. 8. — P. 47–57. — in Russian.
  10. M. Anand, K. Rajagopal, K. R. Rajagopal. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood // Journal of Theoretical Medicine. 2003. — V. 5. — P. 183–218.
  11. G. B. Jeffery. The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid // Proceedings of the Royal Society of London Series A Containing Papers of a Mathematical and Physical Character. 1922. — V. 102. — P. 161–179.
  12. S. D. Lewis, P. P. Shields, J. A. Shafer. Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin // Journal of Biological Chemistry. 1985. — V. 260. — P. 10192–10199.
  13. A. I. Lobanov, A. V. Nikolaev, T. K. Starozhilova. Mathematical model of fibrin polymerization // Mathematical Modelling of Natural Phenomena. 2011. — V. 6, no. 7.
  14. G. Marx. Simulating fibrin clotting time // Medical & Biological Engineering & Computing. 2006. — V. 44. — P. 79–85.
  15. G. Marx, A. Blankenfeld. Kinetic and mechanical parameters of pure and cryoprecipitate fibrin // Blood Coagulation and Fibrinolysis. 1993. — V. 4. — P. 73–78.
  16. P. P. Naidu, M. Anand. Importance of VIIIa Inactivation in a Mathematical Model for the Formation, Growth, and Lysis of Clots // Mathematical Modelling of Natural Phenomena. 2014. — V. 9, no. 06. — P. 17–33.
  17. M. A. Panteleev, A. N. Balandina, E. N. Lipets, et. al. . Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation // Biophysical journal. 2010. — V. 98, no. 9. — P. 1751–61.
  18. M. A. Panteleev, M. V. Ovanesov, A. M. Shibeko, et. al. . Computer simulation study of blood coagulation control / Mathematical models and methods in biology and medicine. — P. 12. — Bedlewo, Poland 2005.
  19. A. M. Shibeko, M. A. Panteleev, F. I. Ataullakhanov. Binding of fibrinogen to fibrin as a regulator of fibrin polymerization initiation / Modeling of Blood Diseases. 2007. — P. 19.
  20. J. W. Weisel, C. Nagaswami. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled // Biophysical Journal. 1992. — V. 63. — P. 111–128.
  21. V. I. Zarnitsina, F. I. Ataullakhanov, A. I. Lobanov, O. L. Morozova. Dynamics of spatially nonuniform patterning in the model of blood coagulation // Chaos (Woodbury, N.Y.). 2001. — V. 11, no. 1. — P. 57–70.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"