Modern methods of mathematical modeling of blood flow using reduced order methods

 pdf (245K)  / Annotation

List of references:

  1. И. В. Ашметков, А. Я. Буничева, А. В. Лукшин, В. Б. Кошелев, С. И. Мухин, Н. В. Соснин, А. П. Фаворский, А. Б. Хруленко. Математическое моделирование кровообращения на основе программного комплекса CVSS / В сб. Компьютерные модели и прогресс медицины. — М: Наука, 2001. — С. 194–218.
    • I. V. Ashmetkov, A. Ya. Bunicheva, A. V. Lukshin, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, A. B. Khrulenko. Mathematical modelling of blood circulation based on CVSS software / Computer models and medicine progress. — Moscow: Nauka, 2001. — P. 194–218. — in Russian. — MathSciNet: MR1887266.
  2. Э. А. Бибердорф, Н. И. Попова. Численное решение задачи гемодинамики методом прямых и методом ортогональной прогонки. — Новосибирск: ИЯФ, 2009. — С. 35.
    • E. A. Biberdorf, N. I. Popova. Numerical solution of the task of haemodynamics by the methods of lines and orthogonal crout algorithm. — Novosibirsk: INP, 2009. — P. 35. — in Russian.
  3. С. С. Григорян, Ю. З. Саакян, А. К. Цатурян. О механизме генерации звуков Короткова // ДАН СССР. — 1980. — Т. 251, № 3. — С. 570–574.
    • S. S. Grigoryan, Yu. Z. Saakyan, A. K. Tsaturyan. Mechanism of generation of Korotkov sounds // Soviet Physics Doklady. — 1980. — V. 25. — P. 177. — ads: 1980SPhD...25..177G.
  4. С. С. Григорян, Ю. З. Саакян, А. К. Цатурян. О причинах возникновения «бесконечного» тона Короткова // ДАН СССР. — 1981. — Т. 259, № 4. — С. 739–740.
    • S. S. Grigoryan, Yu. Z. Saakyan, A. K. Tsaturyan. On the origin of “infinite” Korotkov tones // Soviet Physics Doklady. — 1981. — V. 26. — P. 739–740. — ads: 1981SPhD...26..739G.
  5. С. С. Симаков. Численное исследование динамики системного кровотока при кровопотере // Информационные технологии моделирования и управления. — 2006. — Т. 8, № 33. — С. 931–938.
    • S. S. Simakov. Computational simulation of the systemic haemodynamics during hemorrhage // Informational technologies. — 2006. — V. 8, no. 33. — P. 931–938. — in Russian. — ads: 2006mdxi.book.....S.
  6. C. С. Симаков, А. С. Холодов. Численный анализ воздействия акустических возмущений на функцию легких и гемодинамику малого круга кровообращения / Медицина в зеркале информатики: сборник. — М: Наука, 2008. — С. 124–144.
    • S. S. Simakov, A. S. Kholodov. Computational analysis of acoustical impacts to the lungs function and pulmonary circulation / Medicine in the mirror of informatics: sbornik. — Moscow: Nauka, 2001. — P. 124–144. — . — in Russian.
  7. C. С. Симаков, А. С. Холодов, А. В. Евдокимов. Методы расчета глобального кровотока в организме человека с использованием гетерогенных вычислительных моделей / Медицина в зеркале информатики: сборник. — М: Наука, 2008. — С. 145–170.
    • S. S. Simakov, A. S. Kholodov, A. V. Evdokimov. The methods of computation global blood flow in the human organism using heterogenous computational models / Medicine in the mirror of informatics: sbornik. — Moscow: Nauka, 2001. — P. 145–170. — in Russian.
  8. А. С. Холодов, А. И. Лобанов, А. В. Евдокимов. Разностные схемы для решения жестких обыкновенных дифференциальных уравнений в пространстве неопределенных коэффициентов. — М: МФТИ, 1985. — С. 49.
    • A. S. Kholodov, A. I. Lobanov, A. V. Evdokimov. Numerical schemes for solving stiff ordinary differential equations in the space of undetermined coefficients. — Moscow: MFTI, 1985. — P. 49. — in Russian.
  9. А. С. Холодов. Некоторые динамические модели внешнего дыхания и кровообращения с учетом их связности и переноса веществ / Компьютерные модели и прогресс медицины: сборник. — М: Наука, 2001. — С. 127–163.
    • A. S. Kholodov. Some dynamical models of multi-dimensional problems of respiratory and circulatory systems including their interaction and matter transport / Computer models and medicine progress: sbornik. — Moscow: Nauka, 2001. — P. 127–163. — in Russian.
  10. А. С. Холодов, А. В. Евдокимов. Квазистационарная пространственно распределенная модель замкнутого кровообращения организма человека / Компьютерные модели и прогресс медицины: сборник. — М: Наука, 2001. — С. 164–193.
    • A. S. Kholodov, A. V. Evdokimov. Pseudo-steady distributed model of closed circulation in human organism / Computer models and medicine progress: sbornik. — Moscow: Nauka, 2001. — P. 164–193. — in Russian.
  11. M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, V. B. Koshelev, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii. Mathematical model for hemodynamics of cardiovascular system // Differential equations. — 1997. — V. 33, no. 7. — P. 892–898. — Math-Net: Mi eng/de9478. — MathSciNet: MR1615495.
  12. M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, A. B. Khrulenko. Strategy of mathematical cardiovascular system modeling // Matematicheskoe modelirovanie. — 2000. — V. 12, no. 2. — P. 106–117. — Math-Net: Mi eng/mm846.
  13. J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiro, S. J. Sherwin. Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models // International journal for numerical methods in fluids. — 2008. — V. 56, no. 8. — P. 1061–1067. — DOI: 10.1002/fld.1606. — MathSciNet: MR2393499. — ads: 2008IJNMF..56.1061A.
  14. J. Alastruey, K. H. Parker, J. Peir´o, S. J. Sherwin. Analysing the pattern of pulse waves in arterial networks: a time-domain study // Journal of engineering mathematics. — 2009. — V. 64, no. 4. — P. 331–351. — DOI: 10.1007/s10665-009-9275-1. — MathSciNet: MR2511989. — ads: 2009JEnMa..64..331A.
  15. J. Alastruey, A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, J. Peir´o. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements // Journal of biomechanics. — 2011. — V. 44, no. 12. — P. 2250–2258. — DOI: 10.1016/j.jbiomech.2011.05.041.
  16. D. Amadori, S. Ferrari, L. Formaggia. Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels // Networks & Heterogeneous Media. — 2007. — V. 2, no. 1. — P. 99–125. — DOI: 10.3934/nhm.2007.2.99. — MathSciNet: MR2291814.
  17. D. Ambrosi, A. Quarteroni, G. Rozza. Modeling of Physiological Flows. — Springer Science & Business Media, 2012. — 418 p.
  18. R. Armentano, J. L. Megnien, A. Simon, F. Bellenfant, J. Barra, J. Levenson. Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans // Hypertension. — 1995. — V. 26, no. 1. — P. 48–54. — DOI: 10.1161/01.HYP.26.1.48.
  19. A. P. Avolio. Multi-branched model of the human arterial system // Medical & biological engineering & computing. — 1980. — V. 18. — P. 709–718. — DOI: 10.1007/BF02441895.
  20. A. C. L. Barnard, W. A. Hunt, W. P. Timlake, E. Varley. A theory of fluid flow in compliant tubes // Biophysical journal. — 1966. — V. 6, no. 6. — P. 717–724. — DOI: 10.1016/S0006-3495(66)86690-0. — ads: 1966BpJ.....6..717B.
  21. N. Bessonov, A. Sequeira, S. Simakov, Yu. Vasilevski, V. Volpert. Methods of blood flow modelling // Mathematical modelling of natural phenomena. — 2016. — V. 11, no. 1. — P. 1–25. — DOI: 10.1051/mmnp/201611101. — MathSciNet: MR3452632.
  22. P. J. Blanco, R. A. Feij´oo. A 3D-1D-0D Computational model for the entire cardiovascular system // Computational Mechanics. — 2010. — V. XXIX. — P. 5887–5911. — E. Dvorking, M. Goldschmit, M. Storti.
  23. P. J. Blanco, S. M. Watanabe, M. A. R. F. Passos, P. A. Lemos, R. A. Feij´oo. An anatomically detailed arterial network model for one-dimensional computational hemodynamics // IEEE Transaction on Biomedical Engineering. — 2015. — V. 62, no. 11. — P. 736–753. — DOI: 10.1109/TBME.2014.2364522.
  24. E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. M¨uller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, J. Alastruey. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling // International journal for numerical methods in biomedical engineering. — 2015. — V. 31, no. 10. — e02732. — DOI: 10.1002/cnm.2732. — MathSciNet: MR3432650.
  25. E. Boileau, P. Nithiarasu. One-dimensional modelling of the coronary circulation. Application to noninvasive quantification of fractional flow reserve (FFR) // Lecture Notes in Computational Vision and Biomechanics. — 2015. — V. 21. — P. 137–155. — DOI: 10.1007/978-3-319-15799-3_11.
  26. A. G. Borzov, S. I. Mukhin, N. V. Sosnin. Conservative algorithm of substance transport over a closed graph of cardiovascular system // Russian journal of numerical analysis and mathematical modelling. — 2012. — V. 27, no. 5. — P. 413–429. — DOI: 10.1515/rnam-2012-0023. — MathSciNet: MR3034192.
  27. A. G. Borzov, S. I. Mukhin, N. V. Sosnin. Conservative schemes of matter transport in a system of vessels closed by the heart // Differential equations. — 2012. — V. 48, no. 7. — P. 919–928. — DOI: 10.1134/S0012266112070038. — MathSciNet: MR3180109.
  28. A. Bouchnita, T. Galochkina, P. Kurbatova, P. Nony, V. Volpert. Conditions of microvessel occlusion for blood coagulation in flow // International journal for numerical methods in biomedical engineering. — 2016. — V. 33, no. 9. — e2850. — DOI: 10.1002/cnm.2850. — MathSciNet: MR3697331.
  29. A. Ya. Bunicheva, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii. Numerical experiment in hemodynamics // Differential equations. — 2004. — V. 40, no. 7. — P. 984–999. — DOI: 10.1023/B:DIEQ.0000047029.23374.8c. — MathSciNet: MR2157882.
  30. A. Ya. Bunicheva, M. A. Menyailova, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii. Studying the influence of gravitational overloads on the parameters of blood flow in vessels of greater circulation // Mathematical models and computer simulations. — 2013. — V. 5, no. 1. — P. 81–91. — DOI: 10.1134/S207004821301002X. — MathSciNet: MR3051810.
  31. J. C. Butcher, P. Sehnalov´a. Predictor–corrector Obreshkov pairs // Computing. — 2013. — V. 95, no. 5. — P. 355–371. — DOI: 10.1007/s00607-012-0258-0. — MathSciNet: MR3048632.
  32. G. A. Buxton, N. Clarke. Computational phlebology: the simulation of a vein valve // Journal of biological physics. — 2006. — V. 32, no. 6. — P. 507–521. — DOI: 10.1007/s10867-007-9033-4.
  33. S. ˇ Cani´c, E. H. Kim. Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels // Mathematical Methods in the Applied Sciences. — 2003. — V. 26, no. 8. — P. 1161–1186. — DOI: 10.1002/mma.407. — MathSciNet: MR2002976. — ads: 2003MMAS...26.1161C.
  34. S. ˇ Cani´c, J. Tambaˇca, G. Guidoboni, A. Mikeli´c, C. J. Hartley, A. Rosenstrauch. Modeling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow // SIAM Journal of applied mathematics. — 2006. — V. 67, no. 1. — P. 164–193. — DOI: 10.1137/060651562. — MathSciNet: MR2272619.
  35. M. Capoccia. Development and characterization of the arterial windkessel and its role during left ventricular assist device assistance // Artificial organs. — 2015. — V. 39, no. 8. — P. E138–E153. — DOI: 10.1111/aor.12532.
  36. C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The Mechanics of the Circulation. — Cambridge University Press, 2012. — 2nd Edition.
  37. A. A. Cherevko, A. V. Mikhaylova, A. P. Chupakhin, I. V. Ufimtseva, A. L. Krivoshapkin, K. Yu. Orlov. Relaxation oscillation model of hemodynamic parameters in the cerebral vessels // Journal of physics: conference series. — 2016. — V. 722, no. 1. — 012045. — DOI: 10.1088/1742-6596/722/1/012045.
  38. I. L. Chernyavsky, N. A. Kudryashov. A Mathematical model for autoregulation of the arterial lumen by endotheliumderived relaxing factor // Advanced science letters. — 2008. — V. 1, no. 2. — P. 226–230. — DOI: 10.1166/asl.2008.024.
  39. E. Crepeau, M. Sorine. A reduced model of pulsatile flow in an arterial compartment // Chaos Solitons & Fractals. — 2007. — V. 34, no. 2. — P. 594–605. — DOI: 10.1016/j.chaos.2006.03.096. — MathSciNet: MR2327436. — ads: 2007CSF....34..594C.
  40. T. David, S. Alzaidi, H. Farr. Coupled autoregulation models in the cerebro-vasculature // Journal of engineering mathematics. — 2009. — V. 64. — P. 403–415. — DOI: 10.1007/s10665-009-9274-2. — MathSciNet: MR2511994. — ads: 2009JEnMa..64..403D.
  41. A. Danilov, Yu. Ivanov, R. Pryamonosov, Yu. Vassilevski. Methods of graph network reconstruction in personalized medicine // International journal for numerical methods in biomedical engineering. — 2016. — V. 32, no. 8. — e02754. — DOI: 10.1002/cnm.2754.
  42. T. Dobroserdova, M. Olshanskii, S. Simakov. Multiscale coupling of compliant and rigid walls blood flow models // International journal for numerical methods in fluids. — 2006. — V. 82, no. 12. — P. 799–817. — DOI: 10.1002/fld.4241. — MathSciNet: MR3580957. — ads: 2016IJNMF..82..799D.
  43. T. Dobroserdova, S. Simakov, T. Gamilov, R. Pryamonosov, E. Sakharova. Patient-specific blood flow modelling for medical applications // MATEC Web of Conferences. — 2016. — V. 76. — 05001. — DOI: 10.1051/matecconf/20167605001.
  44. A. Elgarayhi, E. K. El-Shewy, A. A. Mahmoud, A. A. Elhakem. Propagation of nonlinear pressure waves in blood // ISRN Computational biology. — 2008. — 436267.
  45. L. Formaggia, D. Lamponi, A. Quarteroni. One-dimensional models for blood flow in arteries // Journal of Engineering Mathematics. — 2003. — V. 47. — P. 251–276. — DOI: 10.1023/B:ENGI.0000007980.01347.29. — MathSciNet: MR2038983. — ads: 2003JEnMa..47..251F.
  46. L. Formaggia, D. Lamponi, M. Tuveri, A. Veneziani. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart // Computer methods in biomechanics and biomedical engineering. — 2006. — V. 9, no. 5. — P. 273–288. — DOI: 10.1080/10255840600857767.
  47. L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. — Heidelberg: Springer, 2009. — V. 1. — MathSciNet: MR2524089.
  48. T. K. Gaik, H. Demiray. Forced Korteweg-de Vries-Burgers equation in an elastic tube filled with a variable viscosity fluid // Chaos solitons & fractals. — 2008. — V. 38, no. 4. — P. 1134–1145. — DOI: 10.1016/j.chaos.2007.02.005. — MathSciNet: MR2435609. — ads: 2008CSF....38.1134G.
  49. T. Gamilov, Yu. Ivanov, P. Kopylov, S. Simakov, S. Vassilevski. Patient specific haemodynamic modeling after occlusion treatment in leg // Mathematical modelling for natural phenomena. — 2014. — V. 9, no. 6. — P. 85–97. — DOI: 10.1051/mmnp/20149607. — MathSciNet: MR3264330.
  50. T. M. Gamilov, P. Yu. Kopylov, R. A. Pryamonosov, S. S. Simakov. Virtual fractional flow reserve assessment in patient-specific coronary networks by 1D hemodynamic model // Russian journal of numerical analysis and mathematical modelling. — 2015. — V. 30, no. 5. — P. 269–276. — DOI: 10.1515/rnam-2015-0024. — MathSciNet: MR3420391.
  51. D. Gognieva, T. Gamilov, R. Pryamonosov, V. Betelin, S. Ternovoy, N. Serova, S. Abugov, D. Shchekochikhin, Yu. Mitina, H. El-Manaa, Ph. Kopylov. One-dimensional mathematical model-based automated assessment of fractional flow reserve in a patient with silent myocardial ischemia // The American journal of case reports. — 2018. — V. 19. — P. 724–728. — DOI: 10.12659/AJCR.908449.
  52. N. O. Gorodnova, A. V. Kolobov, O. A. Mynbaev, S. S. Simakov. Mathematical modeling of blood flow alteration in microcirculatory network due to angiogenesis // Lobachevskii Journal of Mathematics. — 2016. — V. 37, no. 5. — P. 541–549. — DOI: 10.1134/S199508021605005X. — MathSciNet: MR3549482.
  53. J. B. Geddes, R. T. Carr, F. Wu, Y. Lao, M. Maher. Blood flow in microvascular networks: a study in nonlinear biology // Chaos. — 2010. — V. 20, no. 4. — 045123. — DOI: 10.1063/1.3530122. — MathSciNet: MR2791166. — ads: 2010Chaos..20d5123G.
  54. D. Guan, F. Liang, P. A. Gremaud. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model // Journal of biomechanics. — 2016. — V. 49, no. 9. — P. 1583–1592. — DOI: 10.1016/j.jbiomech.2016.03.037.
  55. G. A. Holzapfel, T. C. Gasser, R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models // Journal of elasticity and the physical science of solids. — 2000. — V. 61, no. 13. — P. 1–48. — MathSciNet: MR1852945.
  56. D. I. Isaikin, A. V. Evdokimov, A. S. Kholodov, S. S. Simakov. 2D computational model of blood circulation in organs coupled with the net model of large vessels / Proceedings of the 2005 Summer Bioengineering Conference. — 2005. — P. 59–60.
  57. D. A. Johnson, W. C. Rose, J. W. Edwards, U. P. Naik, A. N. Beris. Application of 1D blood flow models of the human arterial network to differential pressure predictions // Journal of Biomechanics. — 2011. — V. 44, no. 5. — P. 869–876. — DOI: 10.1016/j.jbiomech.2010.12.003.
  58. A. K. Khe, A. A. Cherevko, A. P. Chupakhin, M. S. Bobkova, A. L. Krivoshapkin, K. Yu. Orlov. Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models // Journal of physics conference series. — 2016. — V. 722, no. 1. — 012042. — DOI: 10.1088/1742-6596/722/1/012042.
  59. A. S. Kholodov, S. S. Simakov, A. V. Evdokimov, Ya. A. Kholodov. Matter transport simulations using 2D model of peripheral circulation coupled with the model of large vessels / Proceedings of II International conference on computational bioengineering. — 2005. — P. 479–490.
  60. A. S. Kholodov, A. V. Evdokimov, S. S. Simakov. Numerical simulation of peripheral circulation and substance transfer with 2D models / Mathematical biology: recent trends. — 2006. — P. 22–29. — Chandra P., Kumar R.
  61. A. S. Kholodov. Monotonic difference schemes on irregular grids for elliptic equations in domains with multiple boundaries // Matematicheskoe modelirovanie. — 1991. — V. 3, no. 9. — P. 104–113. — Math-Net: Mi eng/mm2275. — MathSciNet: MR1157075.
  62. C. S. Kim, C. Kris, D. Kwak. Numerical models of human circulatory system under altered gravity: brain circulation / AIAA 42nd Aerospace Sciences Meeting and Exhibit. — 2004-1092. — Reno, NV, January 2004.
  63. I. Kokalari, T. Karaja, M. Guerrisi. Review on lumped parameter method for modeling the blood flow in systemic arteries // Journal of biomedical science and engineering. — 2013. — V. 6. — P. 92–99. — DOI: 10.4236/jbise.2013.61012.
  64. Th. Korakianitis, Y. Shi. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves // Journal of biomechanics. — 2006. — V. 39, no. 11. — P. 1964–1982. — DOI: 10.1016/j.jbiomech.2005.06.016.
  65. V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski. Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation // Matematicheskoe Modelirovanie. — 2007. — V. 19, no. 3. — P. 15–28. — in Russian. — Math-Net: Mi eng/mm933.
  66. W. Kroon, W. Huberts, M. Bosboom, F. van de Vosse. A Numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models // Computational and mathematical methods in medicine. — 2012. — 156094. — MathSciNet: MR2916781.
  67. M. B. Kuznetsov, N. O. Gorodnova, S. S. Simakov, A. V. Kolobov. Multiscale modeling of angiogenic tumor growth, progression and therapy // Biophysics. — 2016. — V. 61, no. 6. — P. 1042–1051. — DOI: 10.1134/S0006350916050183.
  68. I. Larrabidea, P. J. Blanco, S. A. Urquiza, E. A. Dari, M. J. V´eneref, N. A. De Souza e Silvac, R. A. Feij´oo. HeMoLab — hemodynamics modelling laboratory: an application for modelling the human cardiovascular system // Computers in biology and medicine. — 2012. — V. 42. — P. 993–1004. — DOI: 10.1016/j.compbiomed.2012.07.011.
  69. F. Liang, H. Liu. A closed-loop lumped parameter computational model for human cardiovascular system // JSME International journal: Series C. — 2005. — V. 48. — P. 484–493. — DOI: 10.1299/jsmec.48.484. — ads: 2005JSMEC..48..484L.
  70. F. Liang, H. Liu. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system // Journal of physiological sciences. — 2006. — V. 56, no. 1. — P. 45–65. — DOI: 10.2170/physiolsci.RP001305.
  71. F. Liang, K. Fukasaku, H. Liu, S. Takagi. A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery // BioMedical Engineering OnLine. — 2011. — V. 10. — P. 84. — DOI: 10.1186/1475-925X-10-84.
  72. J. Liu, Z. Yan, Y. Pu, W. S. Shiu, J. Wu, R. Chen, X. Leng, H. Qin, X. Liu, B. Jia, L. Song, Y. Wang, Z. Miao, Y. Wang, L. Liu, X. C. Cai. Functional assessment of cerebral artery stenosis: A pilot study based on computational fluid dynamics // Journal of the cereb blood flow & metabolism. — 2017. — V. 37, no. 7. — P. 2567–2576. — DOI: 10.1177/0271678X16671321.
  73. K. Low, R. van Loon, I. Sazonov, R. L. T. Bevan, P. Nithiarasu. An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms // International journal of numerical methods in biomedical Engineering. — 2012. — V. 28. — P. 1224–1246. — DOI: 10.1002/cnm.2533. — MathSciNet: MR3002659.
  74. Y. Mori, C. Peskin. A universal programmable fiber architecture for the representation of a general incompressible linearly elastic material as a fiber-reinforced fluid // Advances in applied mathematics. — 2009. — V. 43, no. 1. — P. 75–100. — DOI: 10.1016/j.aam.2009.01.004. — MathSciNet: MR2524179.
  75. T. Ohashi, H. Liu, T. Yamaguchi. Computational fluid dynamic simulation of the flow through venous valve / Clinical application of computational mechanics to the cardiovascular system. — Springer, 2000. — P. 186–189.
  76. E. Ozawa, K. Bottom, X. Xiao, R. D. Kamm. Numerical simulation of enhanced external counterpulsation // Annals of biomedical engineering. — 2001. — V. 29. — P. 284–297. — DOI: 10.1114/1.1359448.
  77. K. Lagana, R. Balossino, F. Migliavacca, G. Pennati, L. W. Bove, M. R. de Leval, G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation // Journal of Biomechanics. — 2005. — V. 38, no. 5. — P. 1129–1141. — DOI: 10.1016/j.jbiomech.2004.05.027.
  78. V. Milisic, A. Quarteroni. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models // ESAIM: Mathematical modelling and numerical analysis. — 2004. — V. 38, no. 4. — P. 613–632. — DOI: 10.1051/m2an:2004036. — MathSciNet: MR2087726.
  79. J. P. Mynard, P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method // Communications in numerical methods in engineering. — 2008. — V. 24, no. 5. — P. 367–417. — DOI: 10.1002/cnm.1117. — MathSciNet: MR2412048.
  80. L. O. M¨uller, C. Par´es, E. Toro. Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties // Journal of computational physics. — 2013. — V. 242. — P. 53–85. — DOI: 10.1016/j.jcp.2013.01.050. — MathSciNet: MR3062024. — ads: 2013JCoPh.242...53M.
  81. L. O. M¨uller, E. Toro. A global multiscale mathematical model for the human circulation with emphasis on the venous system // International journal for numerical methods in biomedical engineering. — 2014. — V. 30, no. 7. — P. 681–725. — DOI: 10.1002/cnm.2622. — MathSciNet: MR3232054.
  82. Q. Pan, R. Wang, B. Reglin, G. Cai, J. Yan, A.R. Pries, G. Ning. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks // Journal of Biomedical Engineering. — 2014. — V. 136, no. 1. — 011009. — ads: 2014JBO....19a1009P.
  83. D. V. Parshin, I. V. Ufimtseva, A. A. Cherevko, A. K. Khe, K. Yu. Orlov, A. L. Krivoshapkin, A. P. Chupakhin. Differential properties of Van der Pol – Duffing mathematical model of cerebrovascular haemodynamics based on clinical measurements // Journal of physics: conference series. — 2016. — V. 722, no. 1. — 012030. — DOI: 10.1088/1742-6596/722/1/012030.
  84. T. J. Pedley, X. Y. Luo. Modelling flow and oscillations in collapsible tubes // Theoretical and computational fluid dynamics. — 1998. — V. 10, no. 1. — P. 277–294. — DOI: 10.1007/s001620050064. — ads: 1998ThCFD..10..277P.
  85. T. J. Pedley. The fluid mechanics of large blood vessels. — Cambridge University Press, 1980.
  86. M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions // Annals of Biomedical Engineering. — 2000. — V. 28. — P. 1281–1299. — DOI: 10.1114/1.1326031. — MathSciNet: MR2443016.
  87. A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. — Handbook of numerical analysis. — Elsevier, 2004. — V. 7. — MathSciNet: MR2087609.
  88. A. Quarteroni, G. Rozza. Reduced order methods for modeling and computational reduction. — Springer International Publishing, 2014. — MathSciNet: MR3236886.
  89. I. Sazonov, A. W. Khir, W. S. Hacham, E. Boileau, J. M. Carson, R. van Loon, C. Ferguson, P. Nithiarasu. A novel method for non-invasively detecting the severity and location of aortic aneurysms // Biomechanics and modeling in mechanobiology. — 2017. — V. 16. — P. 1225–1242. — DOI: 10.1007/s10237-017-0884-8.
  90. R. F. Schmidt, G. Thews. Human Physiology. — Berlin: Springer-Verlag, 1989. — 2nd ed.
  91. S. Sherwin, V. Franke, J. Peir´o, K. Parker. One-dimensional modelling of a vascular network in spacetime variables // Journal of engineering mathematics. — 2003. — V. 47. — P. 217–250. — DOI: 10.1023/B:ENGI.0000007979.32871.e2. — MathSciNet: MR2038982. — ads: 2003JEnMa..47..217S.
  92. S. J. Sherwin, L. Formaggia, J. Peir´o, V. Franke. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system // International journal for numerical methods in fluids. — 2003. — V. 43. — P. 673–700. — DOI: 10.1002/fld.543. — MathSciNet: MR2032856. — ads: 2003IJNMF..43..673S.
  93. Y. Shi, P. Lawford, R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system // Biomedical Engineering Online. — 2011. — V. 10, no. 33.
  94. E. B. Shim, J. Y. Sah, C. H. Youn. Mathematical modeling of cardiovascular system dynamics using lumped parameter method // Japanese journal of physiology. — 2004. — V. 54. — P. 545–553. — DOI: 10.2170/jjphysiol.54.545.
  95. S. S. Simakov, A. S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances // Mathematical models and computer simulations. — 2008. — V. 1, no. 2. — P. 283–295. — DOI: 10.1134/S2070048209020112. — MathSciNet: MR2423039.
  96. S. S. Simakov, T. M. Gamilov, Ya. N. Soe. Computational study of blood flow in lower extremities under intense physical load // Russian Journal of Numerical Analysis and Mathematical Modelling. — 2013. — V. 28, no. 5. — P. 485–504. — DOI: 10.1515/rnam-2013-0027. — MathSciNet: MR3296417.
  97. M. F. Snyder, V. C. Rideout. Computer simulation studies of the venous circulation // IEEE Transactions on Bio-Medical Engineering. — 1969. — V. 4. — P. 325–334. — DOI: 10.1109/TBME.1969.4502663.
  98. B. Spronck, E. Martens, E. Gommer, F. van de Vosse. A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling // Am J Physiol Heart Circ Physiol. — 2012. — V. 303. — P. H1143–H1153. — DOI: 10.1152/ajpheart.00303.2012.
  99. S. K. Stamatelos, E. Kim, A. P. Pathak, A. S. Popel. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions // Microvascular Research. — 2014. — V. 91. — P. 8–21. — DOI: 10.1016/j.mvr.2013.12.003.
  100. P. Studinger, Z. Lenard, Z. Kovats, L. Kocsis, M. Kollai. Static and dynamic changes in carotid artery diameter in humans during and after strenuous exercise // The journal of physiology. — 2003. — V. 550, no. 2. — P. 575–583. — DOI: 10.1113/jphysiol.2003.040147.
  101. N. Stergiopulos, D. F. Young, T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses // Journal of biomechanics. — 1992. — V. 25, no. 12. — P. 1477–1488. — DOI: 10.1016/0021-9290(92)90060-E.
  102. O. ˇ Stikonien˙e, R. ˇ Ciegis, A. Stankus. A mathematical model of the cardiovascular system / Progress in industrial mathematics at ECMI 2002. — The european consortium for mathematics in industry. — 2004. — V. 5. — P. 381–385.
  103. H. Suga, K. Sagawa, A. A. Shoukat. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio // Circulation Research. — 1973. — V. 32, no. 3. — P. 314–322. — DOI: 10.1161/01.RES.32.3.314.
  104. K. Sughimoto, F. Liang, Y. Takahara, K. Mogi, K. Yamazaki, S. Takagi, H. Liu. Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system // The journal of thoracic and cardiovascular surgery. — 2013. — V. 145, no. 5. — P. 1367–1372. — DOI: 10.1016/j.jtcvs.2012.07.029.
  105. K. Sungawa, K. Sagawa. Models of ventricular contraction based on time-varying elastance // Critical Reviews in Biomedical Engineering. — 1982. — V. 7, no. 3. — P. 193–228.
  106. F. N. Van de Vosse, N. Stergiopulos. Pulse wave propagation in the arterial tree // Annual Review of Fluid Mechanics. — 2011. — V. 43, no. 1. — P. 467–499. — DOI: 10.1146/annurev-fluid-122109-160730. — MathSciNet: MR2768023. — ads: 2011AnRFM..43..467V.
  107. Yu. Vassilevskii, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova. Numerical issues of modelling blood flow in networks of vessels with pathologies // Russian journal of numerical analysis and mathematical modelling. — 2011. — V. 26, no. 6. — P. 605–622. — MathSciNet: MR2913503.
  108. Yu. Vassilevskii, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova. Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall // Mathematical modelling of natural phenomena. — 2011. — V. 6, no. 5. — P. 333–349. — DOI: 10.1051/mmnp/20116513. — MathSciNet: MR2825232.
  109. Yu. Vassilevskii, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova. Vessel wall models for simulation of atherosclerotic vascular networks // Mathematical modelling of natural phenomena. — 2011. — V. 6, no. 7. — P. 82–99. — DOI: 10.1051/mmnp:20116707. — MathSciNet: MR2812641.
  110. Yu. V. Vassilevski, V. Yu. Salamatova, S. S. Simakov. On the elasticity of blood vessels in one-dimensional problems of hemodynamics // Computational mathematics and mathematical physics. — 2015. — V. 55, no. 9. — P. 1567–1578. — DOI: 10.1134/S0965542515090134. — Math-Net: Mi eng/zvmmf10269. — MathSciNet: MR3396534.
  111. Yu. Vassilevski, A. Danilov, Yu. Ivanov, S. Simakov, T. Gamilov. Personalized anatomical meshing of human body with applications / Modeling the heart and the circulatory system. — Springer, 2015. — P. 221–236.
  112. J. J. Wang, K. H. Parker. Wave propagation in a model of the arterial circulation // Journal of biomechanics. — 2004. — V. 37, no. 4. — P. 457–470. — DOI: 10.1016/j.jbiomech.2003.09.007.
  113. N. Xiao, J. Alastruey-Arimon, C. A. Figueroa. A systematic comparison between 1D and 3D hemodynamics in compliant arterial models // International journal for numerical methods in biomedical engineering. — 2014. — V. 30, no. 2. — P. 204–231. — DOI: 10.1002/cnm.2598. — MathSciNet: MR3164684.
  114. J.-M. Zhang, T. Luo, S. Yaw, T. Aileen, M. Lomarda, A. Sung, L. Wong, F. Yung, J. Keng, et al. Hemodynamic analysis of patient-specific coronary artery tree // International Journal for Numerical Methods in Biomedical Engineering. — 2015. — V. 31, no. 4. — e02708.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"