Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters

 pdf (4233K)  / Annotation

List of references:

  1. В. В. Адлер, А. М. Поверенный, В. Н. Подгородниченко, В. С. Шапот. Изучение процесса транскрипции с использованием антител к ДНК // Молекуляр. биология. — 1973. — Т. 7, № 2. — С. 203–208.
    • V. V. Adler, A. M. Poverennyj, V. N. Podgorodnichenko, V. S. Shapot. Transcription studying using antibodies against cDNA // Molekuljar. biologija. — 1973. — V. 7, no. 2. — P. 203–208. — in Russian.
  2. А. С. Баев, Ю. Л. Любченко, Ю. С. Лазуркин, Э. Н. Трифонов, М. Д. Франк-Каменецкий. Изучение легкоплавких участков ДНК фага Т2 с помощью электронной микроскопии и кинетического формальдегидного метода // Мол. Биол. — 1972. — № 6. — С. 760–766. — MathSciNet: MR0359877.
    • A. S. Baev, Yu. L. Ljubchenko, Yu. S. Lazurkin, E. N. Trifonov, M. D. Frank-Kameneckij. Studying easily melted DNA regions of bacteriophage T2 by means of microscopy and kinetic formaldehyde method // Mol. Biol. — 1972. — V. 6. — P. 760–766. — in Russian.
  3. С. Г. Камзолова, Р. И. Артюх, Л. И. Елфимова. Изучение матричных свойств Т2-ДНК, модифицированных 2,2',6,6'-тетрометил-4-бромацетоксипиперидин-1-оксилом, в РНК-полимеразной системе Е. coli II // Биохимия. — 1977. — Т. 42. — С. 1117–1122.
    • S. G. Kamzolova, R. I. Artjuh, L. I. Elfimova. Studying blueprint properties of T2- DNA modified with 2,2',6,6'-tetromhethyl-4-bromacetoxypiperidin-1-oxyl in E. coli RNA-polymerase system // Biohimija. — 1977. — V. 42. — P. 1117–1122. — in Russian.
  4. С. Г. Камзолова, А. А. Сорокин, А. А. Осипов, П. М. Бескаравайный. Электростатическая карта генома бактериофага Т7. 1. Сравнительный анализ электростатических свойств сигма70- специфических промоторов Т7 ДНК, взаимодействующих с РНК-полимеразой E. coli // Биофизика. — 2009. — Т. 54, № (6). — С. 975–983.
    • S. G. Kamzolova, A. A. Sorokin, A. A. Osipov, P. M. Beskaravajnyj. Electrostatic map of bacteriophage T7 genome. Comparative analysis of electrostatic properties of sigma70-specific T7 DNA promoters recognized by RNA-polymerase of Escherichia coli // Biofizika. — 2009. — V. 54, no. 6. — P. 975–983. — in Russian.
  5. А. А. Сорокин, Т. Р. Джелядин, М. А. Орлов, Е. А. Зыкова, С. Г. Камзолова. Пространственная организация электростатических взаимодействий Т7 РНК-полимеразы с поздними промоторами Т7 ДНК // Вестник биотехнологии и физико-химической биологии им Ю. А. Овчинникова. — 2016. — Т. 12, № 4. — С. 64–71.
    • A. A. Sorokin, T. R. Dzheljadin, M. A. Orlov, E. A. Zykova, S. G. Kamzolova. Spatial organization of electrostatic interactions between T7 RNA-polymerase and late T7 DNA promoters // Yu. A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. — 2016. — V. 12, no. 4. — P. 64–71. — in Russian.
  6. C. J. Benham. Theoretical Analysis of Heteropolymeric Transitions in Superhelical DNA Molecules of Specified Sequence // Journal of Chemical Physics. — 1990. — V. 92. — P. 6294–6305. — DOI: 10.1063/1.458353. — ads: 1990JChPh..92.6294B.
  7. C. J. Benham. Energetics of the strand separation transition in superhelical DNA // J. Mol. Biol. — 1992. — V. 225. — P. 835–847. — DOI: 10.1016/0022-2836(92)90404-8.
  8. C. J. Benham. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci // Proc. Natl. Acad. Sci. U.S.A. — 1993. — V. 90, no. 7. — P. 2999–3003. — DOI: 10.1073/pnas.90.7.2999. — ads: 1993PNAS...90.2999B.
  9. C. J. Benham. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions // J. Mol. Biol. — 1996. — V. 255, no. 3. — P. 425–434. — DOI: 10.1006/jmbi.1996.0035.
  10. C. Bi, C. J. Benham. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA // Bioinformatics (Oxford, England). — 2004. — V. 20. — P. 1477–1479. — DOI: 10.1093/bioinformatics/bth304.
  11. K. J. Breslauer, R. Frank, H. Blocker, L. A. Marky. Predicting DNA duplex stability from the base sequence // Proc. Natl. Acad. Sci. U.S.A. — 1986. — V. 83. — P. 3746–3750. — DOI: 10.1073/pnas.83.11.3746. — ads: 1986PNAS...83.3746B.
  12. D. I. Cherny, A. A. Alexandrov, M. I. Zarudnaya, et al. Investigation of the binding of Escherichia coli RNA polymerase to DNA from bacteriophages T2 and T7 by kinetic formaldehyde method and electron microscopy // Eur. J. Biochem. — 1977. — V. 79. — P. 309. — DOI: 10.1111/j.1432-1033.1977.tb11811.x.
  13. J. C. O. Guerra. Thermodynamics of Denaturation Transition of DNA Duplex Oligomers in the Context of Nearest Neighbor Models: A Short Review // Physics Procedia. — 2015. — V. 68. — P. 37–42. — DOI: 10.1016/j.phpro.2015.07.106. — ads: 2015PhPro..68...37G.
  14. D. Imburgio, M. Rong, K. Ma, W. T. McAllister. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants // Biochemistry. — 2000. — V. 39, no. 34. — P. 10419–10430. — DOI: 10.1021/bi000365w.
  15. S. G. Kamzolova, G. B. Postnikova. Spin-labeled nucleic acids // Quart. Rev. Biophys. — 1981. — V. 14. — P. 223–288. — DOI: 10.1017/S0033583500002250.
  16. S. G. Kamzolova, V. S. Sivozhelezov, A. A. Sorokin, et al. RNA polymerase–promoter recognition. Specific features of electrostatic potential of early T4 phage DNA promoters // J Biomol Struct Dyn. — 2000. — V. 18, no. 3. — P. 325–334. — DOI: 10.1080/07391102.2000.10506669.
  17. S. G. Kamzolova, A. A. Sorokin, T. D. Dzhelyadin, et al. Electrostatic potentials of E. coli genome DNA // J Biomol Struct Dyn. — 2005. — V. 23, no. 3. — P. 341–345.
  18. S. G. Kamzolova, R. M. Beskaravainy, A. A. Osypov, et al. Electrostatic map of T7 DNA: Comparative analysis of functional and electrostatic properties of T7 RNA polymerase-specific promoters // Journal of Biomolecular Structure and Dynamics. — 2014. — V. 32. — P. 1184–1192. — DOI: 10.1080/07391102.2013.819298.
  19. H. Margalit, B. A. Shapiro, R. Nussinov, et al. Helix stability in prokaryotic promoter regions // Biochemistry. — 1988. — V. 27, no. 14. — P. 5179–5188. — DOI: 10.1021/bi00414a035.
  20. W. T. McAllister, A. D. Carter. Regulation of promoter selection by the bacteriophage T7 RNA polymerase in vitro // Nucleic Acids Res. — 1980. — V. 8, no. 20. — P. 4821–4837. — DOI: 10.1093/nar/8.20.4821.
  21. W. R. McClure. Mechanism and control of transcription initiation in prokaryotes // Annu. Rev. Biochem. — 1985. — V. 4. — P. 171–204. — DOI: 10.1146/annurev.bi.54.070185.001131.
  22. T. Michoel, Y. Van de Peer. Helicoidal transfer matrix model for inhomogeneous DNA melting // Phys Rev E Stat Nonlin Soft Matter Phys. — 2006. — V. 73. — 011908. — DOI: 10.1103/PhysRevE.73.011908.
  23. D. A. Natale, A. E. Schubert, D. Kowalski. DNA helical stability accounts for mutational defects in a yeast replication origin // Proc. Natl Acad. Sci. USA. — 1992. — V. 89. — P. 2654–2658. — DOI: 10.1073/pnas.89.7.2654. — ads: 1992PNAS...89.2654N.
  24. A. A. Osypov, G. G. Krutinin, S. G. Kamzolova. DEPPDB — DNA electrostatic potential properties database: electrostatic properties of genome DNA // Journal of Bioinformatics and Computational Biology. — 2010. — V. 08, no. 03. — P. 413. — DOI: 10.1142/S0219720010004811.
  25. J. Pérez-Martín, F. Rojo, V. de Lorenzo. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression // Microbiol. Rev. — 1994. — V. 58. — P. 268–290.
  26. D. Pribnow. Biological Regulation and Development. — New York: Plenum, 1979. — V. 1. — P. 219–277. — R. Goldberger, ed.
  27. RefSeq database. — https://www.ncbi.nlm.nih.gov/refseq/. — (accessed: 22.12.2017).
  28. J. SantaLucia, D. Hicks. The thermodynamics of DNA structural motifs // Annu Rev Biophys Biomol Struct. — 2004. — V. 33. — P. 415–440. — DOI: 10.1146/annurev.biophys.32.110601.141800.
  29. I. A. Shahmuradov, R. M. Razali, S. Bougouffa, A. Radovanovic, V. B. Bajic. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli // Bioinformatics. — 2017. — V. 33, no. 3. — P. 334–340.
  30. A. A. Sorokin, A. A. Osypov, T. R. Dzhelyadin, et al. Electrostatic properties of promoter recognized by E. coli RNA polymerase Esigma70 // Journal of Bioinformatics and Computational Biology. — 2006. — V. 4, no. 2. — P. 455–467. — DOI: 10.1142/S0219720006002077.
  31. N. Sugimoto, S. Nakano, M. Yoneyama, K. Honda. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes // Nucleic Acids Res. — 1996. — V. 24. — P. 4501–4505. — DOI: 10.1093/nar/24.22.4501.
  32. W. Szybalski, H. Kubinski, P. Sheldrick. Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA synthesis // Cold Spring Harb Symp Quant Biol. — 1966. — V. 14. — P. 123–127. — DOI: 10.1101/SQB.1966.031.01.019.
  33. H. Wang, C. J. Benham. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress // BMC Bioinformatics. — 2006. — V. 7. — P. 248. — ads: 2006IAUS..230..248W.
  34. E. Yeramian. Genes and the physics of the DNA double-helix // Gene. — 2000. — V. 255, no. 2. — P. 139–150. — DOI: 10.1016/S0378-1119(00)00301-2.
  35. D. Zhabinskaya, S. Madden, C. J. Benham. SIST: stress-induced structural transitions in superhelical DNA // Bioinformatics (Oxford, England). — 2015. — V. 31, no. 3. — P. 421–2.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"