The Solver of Boltzmann equation on unstructured spatial grids

 pdf (938K)  / Annotation

List of references:

  1. В. В. Аристов, М. С. Иванов, Ф. Г. Черемисин. Решение задачи об одномерной теплопередаче в разреженном газе двумя методами // Журнал вычислительной математики и физики. — 1990. — Т. 30, № 4. — С. 623–626.
    • V. V. Aristov, M. S. Ivanov, F. G. Tcheremisin. Solution of the problem about one dimensional heat transfer in rarefied gas with two methods // Computational mathemetics and physics journal. — 1990. — V. 30, no. 4. — P. 623–626. — in Russian. — MathSciNet: MR1055825.
  2. В. В. Аристов, Ф. Г. Черемисин. Расщепление неоднородного кинетического оператора уравнения Больцмана // ДАН СССР. — 1976. — Т. 231, № 1. — С. 49–52.
    • V. V. Aristov, F. G. Tcheremissine. Splitting of nonuniform kinetic operator of Boltzmann equation // Dokl. AS USSR. — 1976. — V. 231, no. 1. — P. 49–52. — in Russian. — ads: 1976DoSSR.231...49A.
  3. Г. Бёрд. Молекулярная газовая динамика. — М: МИР, 1991.
    • G. A. Bird. Molecular Gas Dynamics. — Oxford: Clarendon Press, 1976.
  4. О. И. Додулад, Ю. Ю. Клосс, А. П. Потапов, Ф. Г. Черемисин, П. В. Шувалов. Моделирование течений разреженного газа на основе решения кинетического уравнения Больцмана консервативным проекционным методом // Журнал вычислительной математики и физики. — 2016. — Т. 56, № 6. — С. 89–105.
    • O. I. Dodulad, Yu. Yu. Kloss, A. P. Potapov, F. G. Tcheremissine, P. V. Shuvalov. Simulation of rarefied gas flows based on the solution of the Boltzmann kinetic equation using the conservative projection method // Computational mathematics and physics journal. — 2016. — V. 56, no. 6. — P. 89–105. — in Russian. — MathSciNet: MR3540576.
  5. М. Н. Коган. Динамика разреженного газа. — М: Наука, 1967.
    • N. Kogan Maurice. Rarefied Dynamics. — Springer US, 1969.
  6. С. Чепмен, Т. Каулинг. Математическая теория неоднородных газов. — М: Издательство иностранной литературы, 1960.
    • T. G. Sydney Chapmen. Cowling the Mathematical Theory of Non-uniform Gases. — Cambridge University Press, 1990. — MathSciNet: MR1148892.
  7. Ф. Г. Черемисин. Консервативный метод вычисления интеграла столкновений Больцмана // Доклады РАН. — 1997. — Т. 357, № 1. — С. 1–4.
    • F. G. Tcheremissine. Conservative method of calculating the Boltzmann collision integral // Reports RAS. — 1997. — V. 357, no. 1. — P. 1–4. — in Russian.
  8. Ф. Г. Черемисин. Решение кинетического уравнения Больцмана для высокоскоростных течений // Вычислительные математика и математическая физика. — 2006. — Т. 7, № 2. — С. 329–343.
    • F. G. Tcheremissine. Solution of Boltzmann kinetic equation for highspeed flows // Computational mathematics and mathematical physics. — 2006. — V. 7, no. 2. — P. 329–343. — in Russian.
  9. Yu. A. Anikin, E. P. Derbakova, O. I. Dodulad, Yu. Yu. Kloss, D. V. Martynov, O. A. Rogozin, P. V. Shuvalov, F. G. Tcheremissine. Computing of gas flows in micro- and nano-scale channels on the base of the Boltzmann Kinetic equation // Proc. Comput. Sci. — 2010. — V. 1, no. 1. — P. 735–744. — DOI: 10.1016/j.procs.2010.04.079.
  10. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss, D. V. Martynov, P. V. Shuvalov, F. G. Tcheremissine. Development of applied software for analysis of gas flows in vacuum devices // Vacuum. — 2012. — V. 86, no. 11. — P. 1170–1777. — DOI: 10.1016/j.vacuum.2012.02.024.
  11. Yu. A. Anikin, O. I. Dodulad, Yu. Yu. Kloss. Method of calculating the collision integral and solution of the Boltzmann kinetic equation for simple gases, gas mixtures and gases with rotational degrees of freedom // International Journal of Computer Mathematics. — 2015. — V. 92, no. 9. — P. 1775–1789. — DOI: 10.1080/00207160.2014.909033. — MathSciNet: MR3356220.
  12. A. Beylich. Solving the kinetic equation for all Knudsen numbers // Phys. Fluids. — 2000. — V. 12, no. 2. — P. 444–465. — DOI: 10.1063/1.870322. — ads: 2000PhFl...12..444B.
  13. F. G. Cheremisin. Conservative method of calculating the Boltzmann collision integral // Dokl. Phys. — 1997. — V. 42. — P. 607–610. — MathSciNet: MR1615606. — ads: 1997DokPh..42..607C.
  14. F. G. Cheremisin. Solving the Boltzmann equation in the case of passing to the hydrodynamic flow regime // Dokl. Phys. — 2000. — V. 45, no. 8. — P. 401–404. — DOI: 10.1134/1.1310733. — MathSciNet: MR1788365. — ads: 2000DokPh..45..401C.
  15. GMSH. — Электронный ресурс. — http://gmsh.info//. — дата обращения: 25.04.2019.
  16. Y. L. Han, E. P. Muntz, A. Alexeenko, M. Young. Experimental and Computational Studies of Temperature Gradient-Driven Molecular Transport in Gas Flows through Nano/Microscale Channels Nanoscale and Microscale // Thermophysical Engineering. — 2007. — V. 11, no. 1-2. — P. 151–175. — ads: 2007NMTE...11..151H.
  17. I. Ibragimov, S. Rjasanow. Numerical solution of the Boltzmann equation on the uniform grid // Computing. — 2002. — V. 69, no. 2. — P. 163–186. — DOI: 10.1007/s00607-002-1458-9. — MathSciNet: MR1954793.
  18. M. Knudsen. Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularstromung // Ann. der Phys. — 1909. — V. 336, no. 1. — P. 205–229. — DOI: 10.1002/andp.19093360110. — ads: 1909AnP...336..205K.
  19. N. M. Korobov. Approximate evaluation of multiple integrals // Dokl. Akad. Nauk SSSR. — 1959. — V. 124. — P. 1207–1210. — MathSciNet: MR0104086.
  20. E. P. Muntz, Y. Sone, K. Aoki, S. Vargo, M. Young. Performance Analysis and Optimization Considerations for a Knudsen Compressor in Transitional Flow // J. Vac. Sci. Technol. A. — 2002. — V. 20, no. 1. — P. 214–224. — DOI: 10.1116/1.1430250. — ads: 2002JVST...20..214M.
  21. T. Ohwada. Heat flow and temperature and density distributions in a rarefied gas between parallel plates with different temperatures. Finite-difference analysis of the nonlinear Boltzmann equation for hard-sphere molecules // Physics of Fluids. — 1996. — V. 8. — P. 2153–2160. — DOI: 10.1063/1.868989. — ads: 1996PhFl....8.2153O.
  22. A. Palczewski, J. Schneider, A. V. Bobylev. Consistency result for a discrete-velocity model of the Boltzmann equation // SIAM J. Numer. Anal. — 1997. — V. 34, no. 5. — P. 1865–1883. — DOI: 10.1137/S0036142995289007. — MathSciNet: MR1472201.
  23. Y. Sone, Y. Waniguchi, K. Aoki. One-way flow of a rarefied gas induced in a channel with a periodic temperature distribution // Phys. Fluids. — 1996. — V. 8. — P. 2227–2235. — DOI: 10.1063/1.869101. — ads: 1996PhFl....8.2227S.
  24. S. Takata, H. Sugimoto, S. Kosuge. Gas separation by means of the Knudsen compressor // European J. Mechanics, B/Fluids. — 2007. — V. 26, no. 2. — P. 155–181. — DOI: 10.1016/j.euromechflu.2006.05.002. — MathSciNet: MR2292272. — ads: 2007EJMF...26..155T.
  25. F. G. Tcheremissine. Solution to the Boltzmann kinetic equation for high-speed flows // Comput. Math. Math. Phys. — 2006. — V. 46, no. 2. — P. 315–329. — DOI: 10.1134/S0965542506020138.
  26. W. P. Teagan, G. S. Springer. Heat-transfer and density-distribution measurements between parallel plates in the transition regime // Phys. Fluids. — 1968. — V. 11, no. 3. — P. 497–506.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"