Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type

 pdf (269K)  / Annotation

List of references:

  1. K. Alim, Sh. Parsa, D. A. Weitz, M. P. Brenner. Local pore size correlations determine flow distributions in porous media // Phys. Rev. Lett. — 2017. — V. 119. — 144501. — DOI: 10.1103/PhysRevLett.119.144501. — ads: 2017PhRvL.119n4501A.
  2. I. V. Amirkhanov, E. Pavluˇsova, M. Pavluˇs, et al. Numerical solution of an inverse diffusion problem for the moisture transfer coefficient in a porous material // Materials and Structures. — 2008. — V. 41. — P. 335–344. — DOI: 10.1617/s11527-007-9246-9.
  3. A. V. Bitsadze, D. F. Kalinichenko. A Collection of Problems on The Equations of Mathematical Physics. — Mir Publishers, 1980. — MathSciNet: MR0581247.
  4. M. Bianchi Janetti. Moisture Absorption in Capillary Active Materials: Analytical Solution for a Multiple Step Diffusivity Function // Transp. Porous Med. — 2018. — V. 125, no. 3. — P. 633–645. — and references therein. — DOI: 10.1007/s11242-018-1143-x. — MathSciNet: MR3871643.
  5. Ch. K. Das, J. K. Singh. Melting transition of confined Lennard-Jones solids in slit pores // Theor. Chem. Acc. — 2013. — V. 132. — P. 1–13. — 1351. — DOI: 10.1007/s00214-013-1351-y.
  6. H. Gould, J. Tobochnik, W. Christian. An Introduction to Computer Simulation Methods. — 2005. — P. 267–268. — Chapter 8. — Third edition.
  7. D. Frenkel, B. Smith. Understanding molecular simulation: from algorithms to applications. — Academic Press, 2006. — 658 p. — Second edition.
  8. W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions // Phys. Rev. A. — 2005. — V. 31. — P. 1695— 1697. — DOI: 10.1103/PhysRevA.31.1695. — ads: 1985PhRvA..31.1695H.
  9. M. Krus. Moisture transport and storage coefficients of porous minearal building materials: Theoretical principals and new test method. — Stuttgart: Fraunhofer IRB Verlag, 1996. — 175 p.
  10. J. E. Lennard-Jones. On the Determination of Molecular Fields // Proc. Roy. Soc. — 1924. — V. A 106. — P. 463— 477. — DOI: 10.1098/rspa.1924.0082.
  11. E. G. Nikonov, M. Pavluˇs, M. Popoviˇcov´a. 2D microscopic and macroscopic simulation of water and porous material interaction. — 2017. — arXiv:1709.05878 [physics.flu-dyn]. — MathSciNet: MR2710425.
  12. E. G. Nikonov, M. Pavluˇs, M. Popoviˇcov´a. Molecular dynamic simulation of water vapor interaction with blind pore of dead-end and saccate type. — 2017. — arXiv:1708.06216 [physics.flu-dyn].
  13. S. Nos´e. A unified formulation of the constant temperature molecular dynamics methods // J. Chem. Phys. — 1984. — V. 81. — P. 511–519. — DOI: 10.1063/1.447334. — MathSciNet: MR1182263. — ads: 1984JChPh..81..511N.
  14. H. Pleinert, H. Sadouki, F. H. Wittmann. Determination of moisture distributions in porous building materials by neutron transmissions analysis // Materials and Structures. — 1998. — V. 31. — P. 218–224. — DOI: 10.1007/BF02480418.
  15. D. W. Siderius, L. D. Gelb. Extension of the Steele 10-4-3 potential for adsorption calculations in cylindrical, spherical, and other pore geometries // J. Chem. Phys. — 2011. — V. 135. — P. 1–7. — 084703. — DOI: 10.1063/1.3626804.
  16. L. Verlet. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard – Jones molecules // Phys. Rev. — 1967. — V. 159. — P. 98–103.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"