Stiffness modeling for anthropomorphic robots

 pdf (5489K)  / Annotation

List of references:

  1. G. Alici, B. Shirinzadeh. Enhanced stiffness modeling, identification and characterization for robot manipulators // IEEE transactions on robotics. — 2005. — V. 21, no. 4. — P. 554–564.
  2. C. Corradini, J.-C. Fauroux, S. Krut, et al. Evaluation of a 4-degree of freedom parallel manipulator stiffness / Proceedings of the 11th World Congress in Mechanisms and Machine Science. — 2003. — Tianjin (China).
  3. D. Gouaillier, V. Hugel, P. Blazevic, et al. Mechatronic design of NAO humanoid / IEEE International Conference on Robotics and Automation. — 2009. — P. 769–774.
  4. Y. Guo, H. Dong, Y. Ke. Stiffness-oriented posture optimization in robotic machining applications // Robotics and Computer-Integrated Manufacturing. — 2015. — V. 35. — P. 69–76.
  5. I. Ha, Y. Tamura, H. Asama, et al. Development of open humanoid platform DARwIn-OP / Proceedings of SICE Annual Conference (SICE). — 2011. — P. 2178–2181.
  6. R. Khusainov, I. Shimchik, I. Afanasyev, E. Magid. Toward a human-like locomotion: Modelling dynamically stable locomotion of an anthropomorphic robot in simulink environment / International Conference on Informatics in Control, Automation and Robotics. — 2015. — V. 02. — P. 141–148.
  7. A. Klimchik, Y. Wu, A. Pashkevich, et al. Optimal selection of measurement configurations for stiffness model calibration of anthropomorphic manipulators // Applied Mechanics and Materials. — Trans. Tech. Publ, 2012. — V. 162. — P. 161–170.
  8. A. Klimchik, A. Pashkevich, D. Chablat. CAD-based approach for identification of elasto-static parameters of robotic manipulators // Finite Elements in Analysis and Design. — 2013. — V. 75. — P. 19–30.
  9. A. Klimchik, D. Chablat, A. Pashkevich. Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings // Mechanism and Machine Theory. — 2014. — V. 79. — P. 1–28.
  10. A. Klimchik, B. Furet, S. Caro, A. Pashkevich. Identification of the manipulator stiffness model parameters in industrial environment // Mechanism and Machine Theory. — 2015. — V. 90. — P. 1–22.
  11. A. Klimchik, A. Pashkevich, D. Chablat. Fundamentals of manipulator stiffness modeling using matrix structural analysis // Mechanism and Machine Theory. — 2019. — V. 133. — P. 365–394.
  12. M. Lapeyre, P. Rouanet, P.-Y. Oudeyer. The poppy humanoid robot: Leg design for biped locomotion / IEEE/RSJ International Conference on Intelligent Robots and Systems. — 2013. — P. 349–356.
  13. S. J. Leon, I. Bica, T. Hohn. Linear algebra with applications. — New York: Macmillan, 1980.
  14. J. Liu, Y. Zhang, Z. Li. Improving the positioning accuracy of a neurosurgical robot system // IEEE/ASME Transactions on Mechatronics. — 2007. — V. 12, no. 5. — P. 527–533.
  15. S. Mamedov, D. Popov, S. Mikhel, A. Klimchik. Compliance Error Compensation based on Reduced Model for Industrial Robots / International Conference on Informatics in Control, Automation and Robotics. — 2018. — V. 2. — P. 190–201.
  16. H. C. Martin. Introduction to matrix methods of structural analysis. — McGraw-Hill, 1966.
  17. A. Nubiola, I. A. Bonev. Absolute calibration of an ABB IRB 1600 robot using a laser tracker // Robotics and Computer-Integrated Manufacturing. — 2013. — V. 29, no. 1. — P. 236–245.
  18. A. Olabi, M. Damak, R. Bearee, et al. Improving the accuracy of industrial robots by offline compensation of joints errors / IEEE International Conference on Industrial Technology (ICIT). — 2012. — P. 492–497.
  19. T. Ozaki, T. Suzuki, T. Furuhashi, et al. Trajectory control of robotic manipulators using neural networks // IEEE Transactions on Industrial Electronics. — 1991. — V. 38, no. 3. — P. 195–202.
  20. A. Pashkevich, D. Chablat, P. Wenger. Stiffness analysis of overconstrained parallel manipulators // Mechanism and Machine Theory. — 2009. — V. 44, no. 5. — P. 966–982.
  21. A. Pashkevich, A. Klimchik, D. Chablat. Enhanced stiffness modeling of manipulators with passive joints // Mechanism and machine theory. — 2011. — V. 46, no. 5. — P. 662–679.
  22. T. Pigoski, M. Griffis, J. Duffy. Stiffness mappings employing different frames of reference // Mechanism and machine theory. — 1998. — V. 33, no. 6. — P. 825–838.
  23. D. Popov, A. Klimchik, I. Afanasyev. Design and Stiffness Analysis of 12 DoF Poppy-inspired Humanoid / International Conference on Informatics in Control, Automation, and Robotics. — 2017. — P. 66–78.
  24. D. Popov, A. Klimchik. Stiffness Analysis for Anthropomorphic Platform / 2nd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). — 2018. — P. 106–108.
  25. Y. Sakagami, R. Watanabe, C. Aoyama, et al. The intelligent ASIMO: System overview and integration / IEEE/RSJ international conference on intelligent robots and systems. — 2002. — V. 3. — P. 2478–2483.
  26. J. K. Salisbury. Active stiffness control of a manipulator in cartesian coordinates / 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. — 1980. — V. 19. — P. 95–100.
  27. J. Yamaguchi, E. Soga, S. Inoue, A. Takanishi. Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking / IEEE International Conference on Robotics and Automation. — 1999. — V. 1. — P. 368–374.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"