CFD analysis of hemodynamics in idealized abdominal aorta-renal artery junction: preliminary study to locate atherosclerotic plaque

 pdf (246K)  / Annotation

List of references:

  1. M. Ameenuddin, M. Anand. Effect of angulation and Reynolds number on recirculation at the abdominal aorta-renal artery junction // Artery Research. — 2018. — V. 21. — P. 1–8. — DOI: 10.1016/j.artres.2017.11.007.
  2. K. E. Barrett, S. M. Barman, S. Boitano, H. Brooks. Ganong’s Review of Medical Physiology. — McGraw-Hill Medical, 2009. — 23/e.
  3. C. G. Caro, J. M. Fitz-Gerald, R. C. Schroter. Carotid bifurcation atherosclerosis. Atheroma and arterial wall shear-Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis // In. Proc. R. Soc. Lond. B. The Royal Society. — 1971. — V. 177, no. 1046. — P. 109–133. — DOI: 10.1098/rspb.1971.0019. — ads: 1971RSPSB.177..109C.
  4. S. Chien, S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, M. M. Guest. Blood viscosity: influence of erythrocyte aggregation // Science. — 1967. — V. 157, no. 3790. — P. 829–831. — DOI: 10.1126/science.157.3790.829. — ads: 1967Sci...157..829C.
  5. S. Chien, S. S. Feng, M. Vayo, L. A. Sung, S. Usami, R. Skalak. The dynamics of shear disaggregation of red blood cells in a flow channel // Biorheology. — 1990. — V. 27, no. 2. — P. 135–147. — DOI: 10.3233/BIR-1990-27202.
  6. Y. I. Cho, K. R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows // Biorheology. — 1991. — V. 28, no. 3-4. — P. 241–262. — DOI: 10.3233/BIR-1991-283-415.
  7. D. L. Fry. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog // Circulation research. — 1969. — V. 24, no. 1. — P. 93–108. — DOI: 10.1161/01.RES.24.1.93.
  8. H. A. Himburg, D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability // American Journal of Physiology-Heart and Circulatory Physiology. — 2004. — V. 286, no. 5. — P. 1916–1922. — DOI: 10.1152/ajpheart.00897.2003.
  9. R. Holenstein, D. N. Ku. Reverse flow in the major infrarenal vessels — a capacitive phenomenon // Biorheology. — 1988. — V. 25, no. 6. — P. 835–842. — DOI: 10.3233/BIR-1988-25604.
  10. D. N. Ku, D. P. Giddens, C. K. Zarins, S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress // Arteriosclerosis, thrombosis, and vascular biology. — 1985. — V. 5, no. 3. — P. 293–302.
  11. D. N. Ku, S. Glagov, Jr. J. E. Moore, C. K. Zarins. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study // Journal of Vascular Surgery. — 1989. — V. 9, no. 2. — P. 309–316. — DOI: 10.1016/0741-5214(89)90071-2.
  12. Z. Lou, W. J. Yang. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation // Journal of biomechanics. — 1993. — V. 26, no. 1. — P. 37–49. — DOI: 10.1016/0021-9290(93)90611-H.
  13. A. M. Malek, S. L. Alper, S. Izumo. Hemodynamic shear stress and its role in atherosclerosis // Jama. — 1999. — V. 282, no. 21. — P. 2035–2042. — DOI: 10.1001/jama.282.21.2035.
  14. H. M. Matos, P. J. Oliveira. Steady and unsteady non-Newtonian inelastic flows in a planar T-junction // International Journal of Heat and Fluid Flow. — 2013. — V. 39. — P. 102–126. — DOI: 10.1016/j.ijheatfluidflow.2012.11.005.
  15. A. I. Miranda, P. J. Oliveira, F. T. D. Pinho. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T junction // International journal for numerical methods in fluids. — 2008. — V. 57, no. 3. — P. 295–328. — DOI: 10.1002/fld.1626. — MathSciNet: MR2410153. — ads: 2008IJNMF..57..295M.
  16. J. E. Moore, D. N. Ku, C. K. Zarins, S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis // Journal of biomechanical engineering. — 1992. — V. 114, no. 3. — P. 391–397. — DOI: 10.1115/1.2891400.
  17. Jr. Moore, E. James, C. Xu, S. Glagov, C. K. Zarins, D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis // Atherosclerosis. — 1994. — V. 110, no. 2. — P. 225–240. — DOI: 10.1016/0021-9150(94)90207-0.
  18. N. Nandakumar, K. C. Sahu, M. Anand. Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel // European Journal of Mechanics-B/Fluids. — 2015. — V. 49. — P. 29–35. — DOI: 10.1016/j.euromechflu.2014.07.005. — MathSciNet: MR3281919. — ads: 2015EJMF...49...29N.
  19. N. K. Nookala. Computational studies leading to a mechanical model for atherosclerotic plaque growth. — Hyderabad: Indian Institute of Technology, 2017. — PhD thesis.
  20. R. J. Poole, M. Alfateh, A. P. Gauntlett. Bifurcation in a T-channel junction: Effects of aspect ratio and shear-thinning // Chemical Engineering Science. — 2013. — V. 104, no. 4. — P. 839–848. — DOI: 10.1016/j.ces.2013.10.006.
  21. B. Saldarriaga, S. A. Pinto, L. E. Ballesteros. Morphological expression of the renal artery. A direct anatomical study in a Colombian half-caste population // Int. J. Morpho. — 2008. — V. 26, no. 1. — P. 31–38. — DOI: 10.4067/S0717-95022008000100005.
  22. I. Sazonov, A. W. Khir, W. S. Hacham, E. Boileau, J. M. Carson, R. van Loon, C. Ferguson, P. Nithiarasu. A novel method for non-invasively detecting the severity and location of aortic aneurysms // Biomechanics and modeling in mechanobiology. — 2017. — V. 16, no. 4. — P. 1225–42. — DOI: 10.1007/s10237-017-0884-8.
  23. S. S. Shibeshi, W. E. Collins. The rheology of blood flow in a branched arterial system // Applied rheology (Lappersdorf, Germany: Online). — 2005. — V. 15, no. 6. — P. 398.
  24. T. Yamamoto, Y. Ogasawara, A. Kimura, H. Tanaka, O. Hiramatsu, K. Tsujioka, M. J. Lever, K. H. Parker, C. J. Jones, C. G. Caro, F. Kajiya. Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis // Arteriosclerosis, thrombosis, and vascular biology. — 1996. — V. 16, no. 1. — P. 172–177. — DOI: 10.1161/01.ATV.16.1.172.
  25. K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal, J. F. Antaki. The flow of blood in tubes: theory and experiment // Mechanics Research Communications. — 1998. — V. 25, no. 3. — P. 257–262. — DOI: 10.1016/S0093-6413(98)00036-6.
  26. C. K. Zarins, D. P. Giddens, B. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress // Circulation research. — 1983. — V. 53, no. 4. — P. 502–514.

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the List of Russian peer-reviewed journals publishing the main research results of PhD and doctoral dissertations.

International Interdisciplinary Conference "Mathematics. Computing. Education"

The journal is included in the RSCI

Indexed in Scopus