Estimation of maximal values of biomass growth yield based on the mass-energy balance of cell metabolism

 pdf (361K)  / Annotation

List of references:

  1. T. Bauchop, S. R. Elsden. The Growth of Micro-organisms in Relation to Their Energy Supply // Journal of General Microbiology. — 1960. — V. 23, no. 3. — P. 457–469.
  2. E. H. Battley. Growth Reaction Equations for Saccharomyces cerevisiae // Physiologia Plantarum. — 1960. — V. 13, no. 2. — P. 192–203. — DOI: 10.1111/j.1399-3054.1960.tb08023.x.
  3. G. H. Bell. Yield Factors and Their Significance // Process Biochemistry. — 1972. — V. 7, no. 4. — P. 21–24, 34. — ads: 1972ifts.book.....B.
  4. C. M. Brown, A. H. Rose. Effect of Temperature on Composition and Cell Volume of Candida utilis // Journal of Bacteriology. — 1969. — V. 97, no. 1. — P. 261–272.
  5. C. M. Brown, A. H. Rose. Fatty-Acid Composition of Candida utilis as Affected by Growth Temperature and Dissolved Oxygen Tension // Journal of Bacteriology. — 1969. — V. 99, no. 2. — P. 371–378.
  6. A. Einsele, A. Fiechter, H.-P. Knoppel. Respiratory Activity of Candida tropicals during Growth on Hexadecane and Glucose // Archiv für Mikrobiologie. — 1972. — V. 82, no. 3. — P. 247–253. — DOI: 10.1007/BF00412196.
  7. E. V. Emel’yanova, I. G. Minkevich, V. K. Eroshin. Growth Characteristics of the Yeast Candida valida VKM-Y-2327 on Glucose // Mikrobiologiya (Russian). — 1992. — V. 61, no. 3. — P. 422−430.
  8. J. J. Heijnen, J. A. Roels. A Macroscopic Model Describing Yield and Maintenance Relationships in Aerobic Fermentation Processes // Biotechnology and Bioengineering. — 1981. — V. 23, no. 4. — P. 739–763. — DOI: 10.1002/bit.260230407.
  9. J. J. Heijnen, J. P. van Dijken. In Search of a Thermodynamic Description of Biomass Yields for the Chemotrophic Growth of Microorganisms // Biotechnology and Bioengineering. — 1992. — V. 39, no. 8. — P. 833–858. — DOI: 10.1002/bit.260390806.
  10. E. Hernandez, M. J. Johnson. Energy Supply and Cell Yield in Aerobically Grown Microorganisms // Journal of Bacteriology. — 1967. — V. 94, no. 4. — P. 996–1001.
  11. R. Kleerebezem, M. C. M. van Loosdrecht. A Generalized Method for Thermodynamic State Analysis of Environmental Systems // Critical Reviews in Environmental Science and Technology. — 2010. — V. 40, no. 1. — P. 1–54. — DOI: 10.1080/10643380802000974.
  12. R. H. Mennett, T. O. M. Nakayama. Influence of Temperature on Substrate and Energy Conversion in Pseudomonas fluorescens // Applied Microbiology. — 1971. — V. 22, no. 5. — P. 272–276.
  13. A. Yu. Krynitskaya, I. G. Minkevich, V. K. Eroshin. Study of Physiological Characteristics of the Yeast Candida valida VKM Y-2327 Growth in Bistat // Applied Biochemistry and Microbiology. — 1987. — V. 23, no. 3. — P. 366–373. — in Russian.
  14. H. K. von Meyenburg. Energetics of the Budding Cycle of Saccharomyces cerevisiae during Glucose Limited Aerobic Growth // Archiv für Mikrobiologie. — 1969. — V. 66, no. 4. — P. 289–303. — DOI: 10.1007/BF00414585.
  15. I. G. Minkevich. Physico-Chemical Properties of Organic Compounds and the Energetics of Metabolism // Journal of Theoretical Biology. — 1982. — V. 95, no. 3. — P. 569–590. — DOI: 10.1016/0022-5193(82)90035-2.
  16. I. G. Minkevich. Estimation of Available Efficiency of Microbial Growth on Methanol and Ethanol // Biotechnology and Bioengineering. — 1985. — V. 27, no. 6. — P. 792–799. — DOI: 10.1002/bit.260270607.
  17. I. G. Minkevich. Mass-energy balance and kinetics of the growth of microorganisms. — Moscow–Izhevsk: Regular and Chaotic Dynamics, 2005. — 351 p. — in Russian.
  18. I. G. Minkevich. Stoichiometric Synthesis of Metabolic Pathways // Computer Research and Modeling. — 2015. — V. 7, no. 6. — P. 1241−1267. — DOI: 10.20537/2076-7633-2015-7-6-1241-1267.
  19. I. G. Minkevich. Mathematical Problems of Metabolic Pathway Organization from Biochemical Reactions // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 2. — P. 406–425. — in Russian. — DOI: 10.17537/2016.11.406.
  20. I. G. Minkevich. The Effect of Cell Metabolism on Biomass Yield during the Growth on Various Substrates // Computer Research and Modeling. — 2017. — V. 9, no. 6. — P. 993−1014. — DOI: 10.20537/2076-7633-2017-9-6-993-1014.
  21. I. G. Minkevich, E. G. Dedyukhina, T. I. Chistyakova. The Effect of Lipid Content on the Elemental Composition and Energy Capacity of Yeast Biomass // Applied Microbiology and Biotechnology. — 2010. — V. 88, no. 3. — P. 799–806. — DOI: 10.1007/s00253-010-2766-1.
  22. I. G. Minkevich, V. K. Eroshin. Expenditure of Oxygen and Water during Growth of Microorganisms // Izvestiya AN SSSR, seriya biologicheskaya (Proceedings of the USSR Academy of Sciences, Biological Series, Russian). — 1972. — no. 2. — P. 245−254.
  23. I. G. Minkevich, V. K. Eroshin. Productivity and Heat Generation of Fermentation under Oxygen Limitation // Folia Microbiologica. — 1973. — V. 18, no. 5. — P. 376–385. — DOI: 10.1007/BF02875932.
  24. I. G. Minkevich, V. K. Eroshin. Regularities of Intracellular Mass-Energy Balance of the Growth of Microorganisms // Uspekhi Sovremennoi Biologii (Proceedings of Modern Biology, Russian). — 1976. — V. 82, no. 1 (4). — P. 103−116.
  25. I. G. Minkevich, P. V. Fursova, L. D. Tjorlova, A. A. Tsygankov, G. Yu. Riznichenko. The Stoichiometry and Energetics of Oxygenic Phototrophic Growth // Photosynthesis Research. — 2013. — V. 116, no. 1. — P. 55–78. — DOI: 10.1007/s11120-013-9896-0.
  26. J. G. Morris. Studies on the Metabolism of Arthrobacter globiformis // Journal of General Microbiology. — 1960. — V. 22, no. 2. — P. 564–582. — DOI: 10.1099/00221287-22-2-564.
  27. H. Ng. Effect of Decreasing Growth Temperature on Cell Yield of Escherichia coli // Journal of Bacteriology. — 1969. — V. 98, no. 1. — P. 232–237.
  28. O. M. Neijssel, D. W. Tempest. Bioenergetic Aspects of Aerobic Growth of Klebsiella aerogenes NCTC 418 in Carbon-Limited and Carbon-Sufficient Chemostat Culture // Archives of Microbiology. — 1976. — V. 107. — P. 215–221. — DOI: 10.1007/BF00446843.
  29. D. L. Nelson, M. M. Cox. Lehninger Principles of Biochemistry. — New York: W. H. Freemann and Co, 2008. — 1158 p.
  30. E. Oura. Reaction Leading to the Formation of Yeast Cell Material from Glucose and Ethanol / The Effect of Aeration on the Growth Energetics and Biochemical Composition of Baker’s Yeast. — Helsinki, 1972. — P. 232–237. — Appendix to the book.
  31. S. J. Pirt. The Maintenance Energy of Bacteria in Growing Cultures // Proceedings of the Royal Society. Series B. Biological Sciences. — 1965. — V. 163, no. 991. — P. 224–231. — DOI: 10.1098/rspb.1965.0069. — ads: 1965RSPSB.163..224P.
  32. D. W. Ribbons. Automatic Assessment of Respiration during Growth in Stirred Fermentors // Applied Microbiology. — 1969. — V. 18, no. 3. — P. 438–443.
  33. U. von Stockar, Th. Maskow, J. Liu, I. W. Marison, R. Patiño. Thermodynamics of Microbial Growth and Metabolism: an Analysis of the Current Situation // Journal of Biotechnology. — 2006. — V. 121, no. 4. — P. 517–533. — DOI: 10.1016/j.jbiotec.2005.08.012.
  34. U. von Stockar, V. Vojinović, Th. Maskow, J. Liu. Can Microbial Growth Yield Be Estimated Using Simple Thermodynamic Analogies To Technical Processes? // Chemical Engineering and Processing. — 2008. — V. 47, no. 6. — P. 980–990. — DOI: 10.1016/j.cep.2007.02.016.
  35. U. von Stockar. Biothermodynamics of Live Cells: a Tool for Biotechnology and Biochemical Engineering // Journal of Non-Equilibrium Thermodynamics. — 2010. — V. 35, no. 4. — P. 415–475. — ads: 2010JNET...35..415V.
  36. U. von Stockar, I. Marison, M. Janssen, R. Patinõ. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth // Journal of Thermal Analysis and Calorimetry. — 2011. — V. 104, no. 1. — P. 45–52. — DOI: 10.1007/s10973-010-1278-7.
  37. A. H. Stouthamer. The Search for Correlation Between Theoretical and Experimental Growth Yields // International Review of Biochemistry. — 1979. — V. 21. — P. 1–47.
  38. A. H. Stouthamer. A Theoretical Study on the Amount of ATP Required for Synthesis of Microbial Cell Material // Antony van Leeuwenhoek Journal of Microbiology and Serology. — 1973. — V. 39, no. 3. — P. 545–565. — DOI: 10.1007/BF02578899.
  39. J. M. VanBriesen. Evaluation of Methods to Predict Bacterial Yield Using Thermodynamics // Biodegradation. — Kluwer Academic Publishers, 2002. — V. 13, no. 3. — P. 171–190. — DOI: 10.1023/A:1020887214879.
  40. J. M. VanBriesen, B. E. Rittmann. Mathematical Description of Microbiological Reactions Involving Intermediates // Biotechnology and Bioengineering. — 2000. — V. 67, no. 1. — P. 35–52. — DOI: 10.1002/(SICI)1097-0290(20000105)67:1<35::AID-BIT5>3.0.CO;2-G.
  41. J. Xiao, J. M. VanBriesen. Expanded Thermodynamic True Yield Prediction Model: Adjustments and Limitations // Biodegradation. — 2008. — V. 19, no. 1. — P. 99–127.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"