Результаты поиска по 'biomass yield':
Найдено статей: 3
  1. Minkevich I.G.
    The stoichiometry of metabolic pathways in the dynamics of cellular populations
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 455-475

    The problem has been considered, to what extent the kinetic models of cellular metabolism fit the matter which they describe. Foundations of stoichiometry of the whole metabolism and its large regions have been stated. A bioenergetic representation of stoichiometry based on a universal unit of chemical compound reductivity, viz., redoxon, has been described. Equations of mass-energy balance (bioenergetic variant of stoichiometry) have been derived for metabolic flows including those of protons possessing high electrochemical potential μH+, and high-energy compounds. Interrelations have been obtained which determine the biomass yield, rate of uptake of energy source for cell growth and other important physiological quantities as functions of biochemical characteristics of cellular energetics. The maximum biomass energy yield values have been calculated for different energy sources utilized by cells. These values coincide with those measured experimentally.

    Views (last year): 5. Citations: 1 (RSCI).
  2. Minkevich I.G.
    The effect of cell metabolism on biomass yield during the growth on various substrates
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 993-1014

    Bioenergetic regularities determining the maximal biomass yield in aerobic microbial growth on various substrates have been considered. The approach is based on the method of mass-energy balance and application of GenMetPath computer program package. An equation system describing the balances of quantities of 1) metabolite reductivity and 2) high-energy bonds formed and expended has been formulated. In order to formulate the system, the whole metabolism is subdivided into constructive and energetic partial metabolisms. The constructive metabolism is, in turn, subdivided into two parts: forward and standard. The latter subdivision is based on the choice of nodal metabolites. The forward constructive metabolism is substantially dependent on growth substrate: it converts the substrate into the standard set of nodal metabolites. The latter is, then, converted into biomass macromolecules by the standard constructive metabolism which is the same on various substrates. Variations of flows via nodal metabolites are shown to exert minor effects on the standard constructive metabolism. As a separate case, the growth on substrates requiring the participation of oxygenases and/or oxidase is considered. The bioenergetic characteristics of the standard constructive metabolism are found from a large amount of data for the growth of various organisms on glucose. The described approach can be used for prediction of biomass growth yield on substrates with known reactions of their primary metabolization. As an example, the growth of a yeast culture on ethanol has been considered. The value of maximal growth yield predicted by the method described here showed very good consistency with the value found experimentally.

    Views (last year): 17.
  3. Minkevich I.G.
    Estimation of maximal values of biomass growth yield based on the mass-energy balance of cell metabolism
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 723-750

    The biomass growth yield is the ratio of the newly synthesized substance of growing cells to the amount of the consumed substrate, the source of matter and energy for cell growth. The yield is a characteristic of the efficiency of substrate conversion to cell biomass. The conversion is carried out by the cell metabolism, which is a complete aggregate of biochemical reactions occurring in the cells.

    This work newly considers the problem of maximal cell growth yield prediction basing on balances of the whole living cell metabolism and its fragments called as partial metabolisms (PM). The following PM’s are used for the present consideration. During growth on any substrate we consider i) the standard constructive metabolism (SCM) which consists of identical pathways during growth of various organisms on any substrate. SCM starts from several standard compounds (nodal metabolites): glucose, acetyl-CoA 2-oxoglutarate, erythrose-4-phosphate, oxaloacetate, ribose-5- phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and pyruvate, and ii) the full forward metabolism (FM) — the remaining part of the whole metabolism. The first one consumes high-energy bonds (HEB) formed by the second one. In this work we examine a generalized variant of the FM, when the possible presence of extracellular products, as well as the possibilities of both aerobic and anaerobic growth are taken into account. Instead of separate balances of each nodal metabolite formation as it was made in our previous work, this work deals at once with the whole aggregate of these metabolites. This makes the problem solution more compact and requiring a smaller number of biochemical quantities and substantially less computational time. An equation expressing the maximal biomass yield via specific amounts of HEB formed and consumed by the partial metabolisms has been derived. It includes the specific HEB consumption by SCM which is a universal biochemical parameter applicable to the wide range of organisms and growth substrates. To correctly determine this parameter, the full constructive metabolism and its forward part are considered for the growth of cells on glucose as the mostly studied substrate. We used here the found earlier properties of the elemental composition of lipid and lipid-free fractions of cell biomass. Numerical study of the effect of various interrelations between flows via different nodal metabolites has been made. It showed that the requirements of the SCM in high-energy bonds and NAD(P)H are practically constants. The found HEB-to-formed-biomass coefficient is an efficient tool for finding estimates of maximal biomass yield from substrates for which the primary metabolism is known. Calculation of ATP-to-substrate ratio necessary for the yield estimation has been made using the special computer program package, GenMetPath.

    Views (last year): 2.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"