# All issues

Результаты поиска по 'stochastic systems':
Найдено статей: 27
1. The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.

2. Stroganov A.V., Aristov V.V.
Probabilistic aspects of “computer analogy” method for solving differential equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 21-31

Method which allows to obtain explicit form of the solution as a part of power series of the argument step is developed. Formalization of characteristics of the algorithm analogous to operations of a computer is performed. The operation of transfer from one rank to another leads to a probability scheme of the algorithm that averages unknown intermediate steps in higher ranks of the series. The stochastic characteristics of the method are studied and illustrated. Examples of solving nonlinear equations and systems of nonlinear differential equations are presented.

Views (last year): 3. Citations: 1 (RSCI).
Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630

A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.

Views (last year): 3.
4. Bashkirtseva I.A.
Analysis of stochastically forced equilibria and noise-induced transitions in nonlinear discrete systems
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 559-571

Stochastically forced discrete dynamical systems are considered. Using first approximation systems, we study dynamics of deviations of stochastic solutions from deterministic equilibria. Necessary and sufficient conditions of the existence of stable stationary solutions of equations for mean-square deviations are derived. Stationary values of these mean-square deviations are used for the estimations of the dispersion of random states nearby stable equilibria and analysis of noise-induced transitions. Constructive application of the suggested technique to the analysis of various stochastic regimes in Ricker population model with Allee effect is demonstrated.

Views (last year): 1. Citations: 2 (RSCI).
5. Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

Views (last year): 14. Citations: 4 (RSCI).
6. Kurushina S.E., Shapovalova E.A.
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607

We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.

We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.

In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.

Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.

Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.

Views (last year): 7.
7. The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.

Views (last year): 15. Citations: 6 (RSCI).
8. Bogomolov S.V.
Stochastic formalization of the gas dynamic hierarchy
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

9. Lubashevsky I.A., Lubashevskiy V.I.
Dynamical trap model for stimulus – response dynamics of human control
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87

We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.

Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.

10. Fialko N.S.
Mixed algorithm for modeling of charge transfer in DNA on long time intervals
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

Views (last year): 2. Citations: 2 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"