КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ 2010 Т. 2 № 4 С. 329–341

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

УДК: 514.7

Полиполярная координация и симметрии

Т. А. Ракчеева

Институт машиноведения им. А. А. Благонравова РАН, Россия, 117334, Москва, Бардина, 4

E-mail: rta_ra@list.ru

Получено 27 июня 2010 г.

Полиполярная система координат формируется семейством параметризованных по радиусу изофокусных kf-лемнискат. Как и классическая полярная система координат, она характеризует точку плоскости полиполярным радиусом ρ и полиполярным углом φ . Для любой связности семейство изометрических кривых $\rho = \text{const}$ – лемнискат и семейство градиентных кривых $\varphi = \text{const}$ являются взаимно ортогональными сопряженными координатными семействами. Рассмотрены особенности полиполярной координации, ее симметрии, а также криволинейные симметрии на многофокусных лемнискатах.

Ключевые слова: кривые, фокусы, многофокусные лемнискаты, овалы Кассини, полярная система координат, координатные семейства, группы симметрий, криволинейные симметрии

Polypolar coordination and symmetries

T. A. Rakcheeva

Mechanical Engineering Research Institute RAS, Bardin str. 4, 117334, Moscow, Russia

Abstract. – The polypolar system of coordinates is formed by a family of a parametrized on a radius isofocal of kf-lemniscates. As well as the classical polar system of coordinates, it characterizes a point of a plane by a polypolar radius ρ and polypolar angle φ . For anyone connectedness a family isometric of curve $\rho = \text{const} - \text{lemniscates}$ and family gradient of curves $\varphi = \text{const} - \text{are mutually orthogonal}$ conjugate coordinate families. The singularities of polypolar coordination, its symmetry, and also curvilinear symmetries on multifocal lemniscates are considered.

Keywords: curves, focuses, multifocal lemniscates, Cassini ovals, polar system of coordinates, coordinate families, groups of symmetries, curvilinear symmetries.

Citation: Computer Research and Modeling, 2010, vol. 2, no. 4, pp. 329–341 (Russian).

© 2010 Татьяна Анатольевна Ракчеева

Введение

Несмотря на универсальность и простоту повсеместно используемой декартовой системы координат (СК), разработано много других систем, применение которых оказывается более удобным для решения той или иной задачи. В общем случае имеющиеся у точки плоскости две степени свободы координируются по-разному в разных СК. Наиболее простая из криволинейных СК – классическая полярная – характеризует точку относительно единого центра также двумя координатами: полярным радиусом ρ и полярным углом φ , где ρ – евклидово расстояние от точки до полюса, а φ – угловая мера относительно полярной оси. Координирование обеспечивается, как известно, двумя семействами: метрическим семейством концентрических окружностей ρ = const и ориентационным семейством радиальных прямых φ = const, проходящих через центр-полюс. Эти семейства взаимно ортогональные, что определяет классическую полярную СК как криволинейную ортогональную СК.

В работе [Ракчеева, 2009] автором предложена новая криволинейная СК – полиполярная система координат (ППЛ), которая так же, как и классическая полярная СК, характеризует точку плоскости двумя координатами: полиполярным радиусом ρ и полиполярным углом φ , но имеет не один центр-полюс, а несколько (конечное число) полюсов. Такое координирование обеспечивается семействами *многофокусных лемнискат*.

В данной работе обсуждается ряд вопросов, связанных с полиполярным координированием плоскости и его симметриями.

1. Полиполярная координация

Многофокусные лемнискаты. Многофокусные лемнискаты (овалы Кассини) на плоскости – гладкие замкнутые фокусные кривые (рис. 1a) без самопересечений, не обязательно односвязные, содержащие внутри себя конечное число фокусов [Маркушевич, 1967; Ракчеева, 2007а; Hilbert, 1935]. Лемниската определяется своим инвариантом через k точек-фокусов и числовой параметр R как геометрическое место точек, для которого сохраняется постоянным, равным R^k , произведение расстояний r_i до всех k фокусов:

$$\prod_{i=1}^{k} r_i = R^k . \tag{1}$$

Для фиксированного набора k фокусов лемнискаты с разными радиусами образуют семейство вложенных кривых от k-связных (для малых значений радиуса R), до односвязных (для больших значений), причем кривые с большим радиусом охватывают кривые с меньшим радиусом без пересечений (рис. 1a).

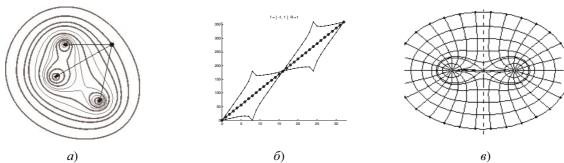


Рис. 1. ЛСК: a) семейство 3f-лемнискат; δ) графики полярных углов ϕ_1 , ϕ_2 и полиполярного угла ϕ вдоль 2f-лемнискаты Бернулли ($\rho = a$); a) 2f-ППЛ

Полиполярная система координат. Семейство многофокусных лемнискат позволяет построить обобщение классического полярного представления в виде полиполярной плоскости.

Пусть k точек-фокусов лемнискаты координируются в абсолютной декартовой системе отсчета (ACO): $f_j = \{a_j, b_j\}, j = 1, ..., k$. Эти k фокусов образуют фокусную структуру $\{f_1, f_2, ..., f_k\}$, которую будем в дальнейшем называть kf-структурой, а соответствующие лемнискаты — kf-лемнискатами.

Kf-структура является структурным началом координат.

Произвольная точка плоскости с ACO-координатами (x, y) в полиполярной лемнискатической системе координат (ЛСК) имеет полиполярные координаты (ρ, φ) , где ρ - метрическая, а φ – угловая координаты, которые являются функциями фокусных ρ_j и φ_j полярных координат соответственно относительно каждого из фокусов f_j .

Вводимая таким образом ППЛ-координация должна удовлетворять следующим требованиям: а) существование и взаимная однозначность: каждой точке (x, y) соответствует одна пара полиполярных координат (ρ, φ) и каждая пара (ρ, φ) координирует одну точку (x, y); б) существование ортогональных изопараметрических сопряженных семейств, их непрерывность и монотонность по координатным параметрам ρ (при φ = const) и φ (при ρ = const); в) предельный переход к классической однополярной системе координат при вырождении полиполярной kf-структуры в монополярную, когда все k фокусов неограниченно сближаются в одну точку.

Метрическая координата ρ . Метрическая координата полиполярной СК определена как среднегеометрическое

$$\rho = \sqrt[k]{r_1 \cdot r_2 \cdot \dots \cdot r_k} \,, \tag{2}$$

фокусных полярных радиусов $\rho_j \equiv r_j$, равных в евклидовой метрике:

$$\rho_{j} \equiv r_{j} = \sqrt{(x - a_{j})^{2} + (y - b_{j})^{2}}.$$
(3)

Метрическая координата ρ существует для любой точки (x,y). Факторизация плоскости по этому координатному параметру взаимно однозначна. В [Ракчеева, 2009] показано, что ρ , как метрическая координата, обладает и другими свойствами расстояния: для любой kf-структуры координата ρ положительна всюду, кроме структурного начала координат, где она обращается в ноль, непрерывно, монотонно и неограниченно растет с удалением от фокусной структуры (вдоль любого ϕ = const) – диапазон значений ρ от 0 до ∞ .

Метрическая координата ρ для произвольной точки плоскости может рассматриваться как определение ее расстояния до kf-структуры.

Координатная полиполярная окружность. Изометрическое семейство координатных кривых ρ = const, которое представляет семейство изофокусных лемнискат, позволяет сформулировать важное следствие:

kf-лемниската $\rho = \text{const} \equiv R^k$, удовлетворяя условию постоянства расстояния до kf-структуры, может рассматриваться на плоскости как многофокусный аналог полярной координатной окружности – полиполярная окружность.

В отличие от классической окружности, которая является монополярной, будем называть kf-лемнискату *полиполярной окружностью*, имея в виду в качестве дополнительного обоснования тот факт, что любая лемниската «окружает» все свои фокусы.

Угловая координата ф. Угловая координата полиполярной лемнискатической СК введена как среднее арифметическое

$$\varphi = (\varphi_1 + \varphi_2 + \dots + \varphi_k)/k \tag{4}$$

фокусных полярных углов φ_j , каждый из которых есть классический полярный угол относительно j-го полюса-фокуса:

$$\varphi_j = \arctan \frac{y - b_j}{x + a_j}. \tag{5}$$

Как угловая координата точки (x,y) ϕ обладает свойствами направления: для любой kfструктуры координата ϕ существует всюду, кроме структурного начала координат, где она не определена, положительна и монотонно возрастает при обходе фокусной структуры в положительном направлении по изометрической кривой ρ = const [Ракчеева, 2009]. Угловая координата ϕ обладает периодической замкнутостью с обычным диапазоном значений: от 0 до 2π . Нулевая изолиния, где ϕ = const = 0, в отличие от полярной оси классической СК, представляет собой осевую прямую только в частном случае симметричности kf-структуры, в общем же случае это кривая линия.

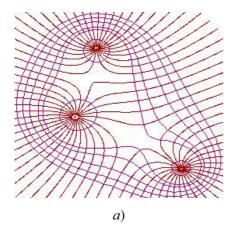
Ориентационная координата φ для произвольной точки плоскости может рассматриваться как определение ее направления на kf-структуру.

Семейства изопараметрических кривых. Важнейшей задачей координации является определение для произвольной kf-структуры семейства изопараметрических кривых, удовлетворяющих условию φ = const, – семейства, сопряженного к семейству изометрических kf-лемнискат. В [Ракчеева, 2009] доказано следующее утверждение для общего случая kf-структуры:

На градиентных к лемнискатам кривых сохраняется неизменной сумма полярных углов: $\varphi_1 + \varphi_2 + ... + \varphi_k$.

Сопряженные семейства изопараметрических кривых $\rho = {\rm const} \ u \ \varphi = {\rm const} \ s$ вляются взаимно ортогональными в каждой точке.

На рис. 1a и рис. 2a, δ приведены координатные сетки сопряженных изометрических семейств кривых: ρ = const (замкнутые кривые, охватывающие фокусы) и φ = const (разомкнутые кривые, идущие от фокусов) для полиполярных систем координат с разным числом полюсов и конфигураций. Приведенные рисунки иллюстрируют форму и характер взаиморасположения сопряженных семейств лемнискат и градиентных к ним кривых, в частности, их взаимную ортогональность и форму сепаратрис как для симметричной, так и для не симметричной kf-структуры.



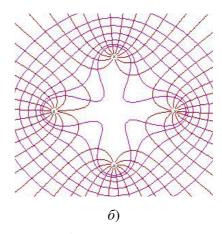


Рис. 2. Полиполярные ППЛ СК: a) 3f-асимметричная, δ) 4f-симметричная

На рис. $1 \ensuremath{s}$ представлена простейшая из полиполярных — всегда симметричная СК двухфокусной структуры, среди лемнискат которой есть кривая в виде «восьмерки», называемая лемнискатой Бернулли. Несимметричный случай произвольной трехфокусной системы представлен рис. $2 \ensuremath{a}$, а на рис. $2 \ensuremath{b}$ — случай четырехфокусной системы координат с полной симметрией.

Предельный переход к классической СК. Объектами полиполярной СК являются, таким образом, kf-структура в качестве начала координат и сопряженные семейства лемнискат ρ = const и градиентных кривых φ = const.

При неограниченном и непрерывном сближении всех k фокусов в одну точку kf-структура в пределе переходит в единый центр-фокус, семейство kf-лемнискат — в семейство окружностей с этим центром, а семейство градиентных кривых — в семейство градиентных к окружностям радиальных прямых, проходящих через фокусный центр. Таким образом:

при вырождении полиполярной kf-структуры в монополярную объекты полиполярной СК непрерывно трансформируются в объекты классической полярной СК.

Асимптотические переходы полиполярной координации в монополярную имеют место также в периферийных областях плоскости, достаточно удаленных от kf-структуры, что соответствует большим значениям ρ (радиуса софокусных координатных лемнискат).

При неограниченном увеличении расстояния ρ от kf-структуры линейные размеры занимаемой ею области относительно размеров области, занимаемой лемнискатой радиуса ρ , неограниченно уменьшаются, что в пределе эквивалентно точечной 1f-структуре. При $\rho \to \infty$ форма лемнискат kf-семейства асимптотически стремится к своей предельной форме — окружности. Действительно, как следует из инварианта (1), форма лемнискаты в каждой точке определяется произведением полярных радиусов (евклидовых фокусных расстояний). Для $\rho \to \infty$ различия между всеми k полярными радиусами в каждой точке лемнискаты стремятся к нулю, т. е. все точки лемнискаты находятся на одинаковом расстоянии от kf-структуры, сконцентрированной в бесконечно малой области в центре лемнискаты. Таким образом, в асимптотике $\rho \to \infty$ форма любой kf-лемнискаты стремится к окружности с центром в геометрическом центре фокусной структуры.

Градиентные кривые φ = const произвольной kf-структуры, исходящие каждая из своего фокуса, при $\rho \to \infty$ асимптотически выпрямляются, приближаясь к прямым y = Cx 1f-структуры, проходящим через общий предельный центр kf-структуры.

Иллюстрацией предельного перехода может частично служить 2f-ППЛ на рис. 1s для удаленных от фокусной структуры лемнискат.

Анализ полиполярной координации, диапазон односвязности. Вопросы *взаимной однозначности*, *непрерывности* и *монотонности* предлагаемой системы координации рассмотрены в [Ракчеева, 2009] как для 2f-структуры, так и для общего случая kf-структуры и доказаны для всех точек плоскости, кроме особенностей ППЛ, которые требуют особого рассмотрения.

Для любой kf-структуры достаточно большие значения ρ дают односвязные и выпуклые лемнискаты, доказательство выполнения указанных требований для которых не представляет сложностей. Так, непрерывно вложенные одна в другую без пересечений и самопересечений лемнискаты с разными радиусами из непрерывного диапазона значений обеспечивают эти свойства для радиальной координаты. Поведение каждого из фокусных полярных углов φ_j (j=1,...,k) при обходе лемнискаты в положительном направлении имеет монотонно возрастающий характер, и чем больше ρ , тем полярные углы φ_j ближе между собой и к полиполярной координате φ , которая получается при этом тоже монотонно возрастающей [Ракчеева, 2009]. Близкие в смысле обычного евклидова расстояния точки АСО-координации (x, y) имеют близкие значения полиполярных координат (ρ, φ) и наоборот.

Анализ полиполярной координации, диапазон многосвязности. Сложности ППЛ-координации возникают при достаточно малых значениях ρ , порождающих невыпуклые и несвязные формы лемнискат (рис. 1e, 2a, δ). Для них характерны разрывы и изломы метрических изолиний, создающие дополнительные проблемы удовлетворения сформулированным выше требованиям к координации. В частности, перестает быть очевидной непрерывность и монотонность угловой координаты φ , т. к. каждый фокусный полярный угол φ_i при обходе лемнискаты в общем случае меняется в разных направлениях и с большими вариациями (рис.16). Тем не менее, на основе анализа поведения производной φ по направлению вдоль произвольной лемнискаты ρ = const доказано [Ракчеева, 2009]:

полиполярная координата ϕ монотонна всюду, кроме особенностей, обусловленных разрывами несвязных лемнискат, – сепаратрис и межфокусных линий.

Указанные особенности необходимо анализировать отдельно. Критический диапазон таких форм: $0 < \rho < \rho_0$, где ρ_0 – предельное значение, при котором лемниската превращается в односвязную кривую и таковой остается для всех $\rho \ge \rho_0$.

Цель настоящей работы — анализ координации внутренней области kf-ЛСК, ограниченной интервалом радиальной координаты $0 < \rho < \rho_0$, содержащей многосвязные лемнискаты в диапазоне форм от k несвязных петель до односвязной кривой, а также анализ симметрий kf-ЛСК.

2. Особенности полиполярной координации

Главная особенность, заключенная в самой фокусной структуре, имеет место в полиполярной СК с любым числом полюсов и любой конфигурацией kf-структуры. В классической полярной СК особой точкой является единственный полюс, где $\rho=0$, а угловая координата φ не определена. В предлагаемой полиполярной СК – это k полюсов фокусной структуры, где обращается в ноль какой-либо из k фокусных радиусов $\rho_j=0$ ($j=1,\ldots,k$), а тем самым – и полиполярный радиус $\rho\equiv R=0$ в соответствии с инвариантом (1). Угловая координата φ в полюсах не имеет определенного значения вследствие неопределенности соответствующего фокусного угла φ_i в полюсе с $\rho_i=0$. Таким образом:

структурное начало полиполярной СК характеризуется нулевым значением метрической координаты ρ и неопределенным значением угловой координаты ϕ как и в классической СК.

Обход несвязных лемнискат kf-ЛСК. Наличие не одного полюса, а структуры полюсов порождает, как указывалось выше, разрывные формы изометрических координатных линий ρ = const и связанные с этим особенности. Прежде всего, для kf-структуры произвольной конфигурации следует рассмотреть вопрос об объединении несвязных петель многосвязной лемнискаты в единую замкнутую координатную линию ρ = const, вдоль которой монотонно меняются значения угловой координаты φ в диапазоне от 0 до 2π , т. е. о возможности организации единой φ -параметризации на многосвязной лемнискате. Обход многосвязной формы сопряжен с переходом с одной петли на другую, при этом порядок обхода, соответствующий φ -параметризации, может дополнительно фрагментировать ее, нарушая топологическую связность петель.

Таким образом, возникает задача:

возможна ли требуемая ϕ -параметризация для любой многосвязной метрической изолинии $\rho = \text{const}$ произвольной kf-ЛСК и каким образом должен быть организован соответствующий обход несвязных форм?

Ответ на этот вопрос дает следующее конструктивное доказательство.

Рассмотрим произвольную kf-структуру и некоторую ее лемнискату L с радиусом в критическом диапазоне $0 < \rho < \rho_0$ любой связности, для которой необходимо доказать возможность организации единого однозначного обхода с требуемой φ -параметризацией. Построить регулярную процедуру обхода исходя из геометрии произвольной kf-структуры для всего непрерывного диапазона многосвязности $0 < \rho < \rho_0$, когда каждое из значений ρ может поменять конфигурацию связности, не представляется возможным. Поэтому предложен другой путь решения поставленной задачи.

Рассмотрим соответствующую kf-лемнискате L софокусную kf-лемнискату L_1 односвязной формы с радиусом вне критической области $\rho_1 > \rho_0$. Как было отмечено выше, на односвязной лемнискате поведение φ непрерывное и монотонно возрастающее с диапазоном от 0 до 2π . Рассмотрим также кривые сопряженного семейства – градиентные кривые, проходящие через все точки лемнискаты L_1 к фокусам kf-структуры. Каждая градиентная кривая идет к одному из фокусов, ортогонально пересекая все кривые семейства лемнискат, имеющие меньшие значения радиуса $0 < \rho < \rho_1$, устанавливая при этом взаимно однозначное соответствие между точками L и L_1 . Точки пересечения φ -параметризованного семейства градиентных кривых

с лемнискатой L при изменении φ от 0 до 2π вдоль односвязной лемнискаты L_1 однозначно определяют *порядок обхода* и лемнискаты L в том же диапазоне от 0 до 2π . Полный обход односвязной L_1 , в точках которой угловая компонента принимает значения $\{\varphi_{L1}\}$, сопровождается синхронно с $\{\varphi_{L1}\}$ изменениями значений $\{\varphi_L\}$ на многосвязной L. Такие синхронные изменения угловой координаты φ относятся не только к лемнискате L, но и ко всем лемнискатам, имеющим значения радиуса в интересующем нас диапазоне многосвязности $0 < \rho < \varphi_0$.

Однозначный порядок движения точки вдоль связной L_1 , задавая через градиентные кривые также однозначный порядок движения вдоль многосвязных софокусных лемнискат этого семейства, определяет тем самым и *моменты переходов* с одной петли на другую (рис. 1_6 , рис. 2a, δ). А соответствующие этим переходам точки разрывов определяют, в свою очередь, фрагментацию петель многосвязных лемнискат по точкам переходов и возвратов между их петлями, возможно, неоднократных.

Монотонность φ -параметризации на несвязной лемнискате обеспечивается тем, что начальная и конечная точки скачкообразного перехода имеют одно и то же значение угловой координаты φ_s , соответствующее ее значению на *cenapampuce*, разделяющей «бассейны» фокусов. В случае 2f-ЛСК единственной сепаратрисой является прямая, проходящая перпендикулярно межфокусному отрезку через его середину (рис. 1e). Сепаратрисы, разделяя зоны принадлежности градиентных кривых к разным полюсам-фокусам, определяют и *схему объединения* многосвязных лемнискат (рис. 1e, рис. 2e, e).

Таким образом, поставленная задача решена положительно, доказано, что: Замкнутый и однократный обход многосвязных лемнискат с непрерывной и монотонной φ -параметризацией в диапазоне $[0, 2\pi]$ существует, и он однозначен. Структура фрагментации и переходов на всем множестве многосвязных лемнискат идентифицируется семейством сепаратрис.

Координирование многосвязных лемнискат. Как следует из предыдущего раздела, начальная и конечная точки переходов между петлями φ -параметризованной несвязной лемнискаты имеют одни и те же значения координат (ρ , φ _s). Возникает следующая задача:

однозначная координация точек разрывов многосвязных лемнискат.

Пары точек переходов образуют одномерные непрерывные по параметру радиуса множества S для всего семейства лемнискат в диапазоне многосвязности $0 < \rho < \rho_0$. Структура этих множеств S определяется межфокусными сепаратрисами и идентифицируется обращением в ноль градиента по φ вдоль ρ = const.

Рассмотрим центрированную двухфокусную ЛСК с фокусами на оси X { $f_1 = (-a, 0)$, $f_2 = (a, 0)$ }, имеющую, согласно (1), определяющим инвариантом $r_1 \cdot r_2 = R^2$, где $r_{1,2} = [(x \pm a)^2 + y^2]^{1/2}$. Компоненты градиента угловой координаты равны [Ракчеева, 2009]:

$$\{[(x-a)\cdot r_2^2 + (x+a)\cdot r_1^2] / (r_1\cdot r_2)^2; [y\cdot r_2^2 + y\cdot r_1^2] / (r_1\cdot r_2)^2\}.$$

Особенности φ -параметризации, как и для любой kf-ЛСК, обусловлены обращением в 0 обеих компонент этого градиента. Приравнивание к нулю найденных компонент дает систему уравнений, в качестве решения которой относительно (x, y) получаем точки межфокусного отрезка (-a, a):

$$\{y = 0; \quad x = a(r_1 - r_2) / (r_1 + r_2) \}.$$
 (6)

Полученное уравнение отрезка прямой представляет собой особую линию 2f-ЛСК — межефокусную сепаратрису — геометрическое место пар симметричных точек двухсвязной лемнискаты, имеющих при одном и том же ρ одинаковые значения координаты φ_s (рис. 1e). Обход двух несвязных петель kf-лемнискаты выполняется в следующем порядке: от крайней правой точки на полярной оси (φ = 0) в положительном направлении по правой петле до межфокусной сепаратрисы в точке (x_s , 0) на оси X, затем скачкообразный переход по сепаратрисе на левую

петлю в точке $(-x_s, 0)$, полный обход ее до той же точки $(-x_s, 0)$, возврат по сепаратрисе на правую петлю в точке $(x_s, 0)$ и завершение периода в начальной точке на полярной оси со значением угловой координаты $(\varphi = 2\pi)$. Взаимная однозначность координации нарушается в точках перехода по горизонтальному межфокусному отрезку (6): каждая из двух точек $(x_s, 0)$ и $(-x_s, 0)$ координируется однозначно (ρ, φ_s) , но вместе с тем одни и те же значения (ρ, φ_s) координируют две физически разные точки плоскости $(x_s, 0)$ и $(-x_s, 0)$.

Такая ситуация возникает в любой kf-ЛСК. Переходы между петлями несвязных kf-лемнискат, гарантирующие монотонную непрерывность φ -параметризации, выполняются также по межфокусным сепаратрисам, но имеющим более сложную конфигурацию. Структура межфокусных сепаратрис для произвольной 3f-структуры хорошо видна на рис. 2a. На рис. 26 эта структура сепаратрис имеет симметричную конфигурацию 4-хлучевой звезды, связывающей 4 полюса с центром симметрии 4f-структуры.

Для решения поставленной задачи однозначной координации *на межфокусных сепаратрисах* предлагается следующая процедура.

При непрерывном обходе несвязной лемнискаты координируется предельная конечная точка текущего фрагмента (стартовая точка разрыва), а соответствующая ей начальная точка нового фрагмента на другой петле (финальная точка разрыва) исключается из обхода на этом этапе. Обход непрерывно продолжается до следующего скачкообразного перехода, в котором снова координируется предельным значением последняя точка текущего фрагмента и т. д. Заключительная точка замыкает обход всей лемнискаты значением 2π на первой ее точке с исходно нулевой угловой координатой аналогично классической полярной СК. Предложенную процедуру можно сформулировать в виде следующего правила.

При обходе многосвязной метрической изолинии ρ = const координируется предельным значением замыкающая точка текущего фрагмента и не координируется соответствующая ей начальная точка следующего фрагмента, которая координируется как заключительная при завершении другого фрагмента, содержащего эту точку.

Такая процедура обеспечивает взаимно однозначное полиполярное координирование (ρ, ϕ) точек межфокусных сепаратрис в критической области многосвязности kf-ЛСК: $0 < \rho < \rho_0$.

Другие сепаратрисы, ортогональные межфокусным и «уходящие» в бесконечность с ростом ρ , не представляют особенностей для координации – каждая точка (x, y) этих линий имеет индивидуальные полиполярные координаты (ρ, φ) , и каждое значение (ρ, φ) координирует одну точку (x, y).

Координирование кратных точек. Кроме точек скачкообразных переходов между несвязными петлями лемнискаты специальной координации требует еще одно критическое множество K точек – точек слияния петель лемнискаты в количестве m. Это точки кратности. Множество K конечное, т. к. количество точек слияния для произвольной kf-структуры ограничено диапазоном $2 \ge m \ge (k-1)$.

Множество кратности K идентифицируется особенностями градиента угловой координаты φ вдоль лемнискаты – в точках этого множества нарушается монотонность. Для доказательства монотонности φ вдоль ρ = const исследовалась, как указывалось выше, производная φ по направлению вдоль лемнискаты, вычисляемая как скалярное произведение градиента угловой координаты и касательной к лемнискате.

Для 2f-ЛСК производная угловой координаты φ , как было показано в [Ракчеева, 2009], равна:

(grad
$$\varphi \cdot \tan \varphi = 8(x^2 + y^2)R^2 \ge 0.$$
 (7)

Особенности этой производной обусловлены обращением скалярного произведения в ноль. Как следует из (7), обращение в ноль происходит в двух случаях: 1) в случае равенства нулю полиполярного радиуса R=0; 2) в точке начала ACO, где $(x^2+y^2)=0$. Первый случай относится к структурному началу координат и рассмотрен выше в связи с особенностями координации на полюсах фокусной структуры.

Второй случай специфичен для любой kf-полиполярной ЛСК и обусловлен моментами слияний несвязных петель в процессе ее трансформаций с ростом ρ от k петель до одной.

Для двухфокусной ЛСК такая точка находится на лемнискате Бернулли, $\rho = a$, в центре межфокусного отрезка, где сливаются две ее петли, а равенство $x^2 + y^2 = 0$ в (7) относится к центрально симметричной точке начала АСО $\{x=0,\ y=0\}$. Особенность этой точки, имеющей разрыв производной, в неоднозначности φ — при обходе «восьмерки» центральная точка проходится дважды: в первый раз — при $\varphi = \pi/2$, а во второй при — $\varphi = 3\pi/2$. Кратность этой точки равна двум.

Для ЛСК с k фокусами подобная ситуация возникает, когда полюсы-фокусы расположены в вершинах правильного k-угольника, образуя kf-структуру с полной группой симметрий. Kf-лемниската, как и лемниската Бернулли, имеет форму в виде k лепестков с одной общей точкой в центре симметрии. Лемнискату такой формы, содержащую центральную точку слияния, выделяет из координатного изометрического семейства единственное значение радиуса $\rho = \rho_0$. В этой точке лемниската mepsem гладкость, претерпевая в ней изломы, а скалярное произведение идентифицирует особенность типа (7). Центральная точка слияния имеет k кратность – при однократном обходе лемнискаты она проходится k раз и имеет одинаковое значение радиальной координаты ρ_0 и k разных значений угловой координаты $\{\varphi_k\}$. Для kf-структуры, центрированной относительно начала ACO, она имеет угловые координаты: $\varphi(j) = \varphi_0 + j2\pi l k$, $j = 0, \ldots, k$ (начальный угол $\varphi_0 = 0$, если ось абсцисс проходит симметрично между двумя петлями лемнискаты, и $\varphi_0 = \pi l k$, если ось проходит через вершину петли). Пример четырехполюсной ЛСК с полностью симметричной организацией приведен на рис. 2δ ($\varphi(j) = \pi l 4 + j\pi l 2$, $j = 0, \ldots, 4$).

В случае полной симметрии конфигурации kf-структуры слияние k несвязных петель лемнискаты при увеличении радиуса ρ в односвязную форму происходит одномоментно при $\rho = \rho_0$ в единственной точке в центре лемнискаты с максимальной кратностью k. Противоположный случай представляет kf-структура без элементов симметрии, — множество k состоит из системы (k-1) точек слияния кратностью k0, в которых координата k0 имеет два значения, отличающиеся на k1 точек слияния кратностью фокусов, расположенных в петле лемнискаты. Во всех промежуточных случаях k1-структура с элементами симметрии имеет k2 точек слияния разной кратности в диапазоне k3 снять неоднозначность координации (гиперкоординацию), обусловленную кратностью, можно следующей процедурой.

Для установления взаимной однозначности снова воспользуемся порядком обхода лемнискаты L_k с точками слияния. При прохождении кратной точки за значение угловой координаты φ_j принимается предельное значение при приближении к этой точке с обеих сторон кривой. Кратная точка имеет в качестве соседних точки лемнискаты с разных исходящих из этой точки фрагментов и с разными в связи с этим как с близкими, так и с далекими значениями φ_j . Так, лемниската Бернулли в малой ε -окрестности кратной точки имеет на каждом из исходящих фрагментов кривой значения φ . $\pi/2 - \delta$, $\pi/2 + \delta$, $3\pi/2 - \delta$, $3\pi/2 + \delta$. Первые два значения относятся к обходу по верхней половине кривой и при $\delta \to 0$ дают $\pi/2$, а вторые два – по нижней половине и при $\delta \to 0$ дают $3\pi/2$. Правило координации кратностей можно сформулировать следующим образом:

кратная точка координируется предельным значением соседних точек лемнискаты при *ф*-параметризованном ее обходе.

Отметим, что координация кратных точек иллюстрирует то обстоятельство, что соседние точки в смысле АСО-координации могут не быть соседними в смысле ППЛ-координации.

Этот эффект нарушения однозначности координации в кратных точках является естественным следствием присущей любой полярной СК периодичности угловой координаты φ – в классической полярной СК φ имеет, как известно, значения с точностью до $2\pi n$.

Результаты этого раздела, посвященного особенностям полиполярной координации внутренней критической области $0 < \rho < \rho_0$, можно объединить следующей формулировкой.

В полиполярной kf-ЛСК структурное начало координат, как u в классической полярной, характеризуется нулевым значением метрической координаты ρ u неопределенным значением угловой координаты φ . Многосвязные лемнискаты объединены в однократный обход c непрерывной, монотонной u однозначной φ -параметризацией в диапазоне $[0, 2\pi]$. Порядок обхода определяется градиентным семейством, структура фрагментации u переходов — его сепаратрисами. Особые точки координируются предельными значениями соседних точек лемнискаты при φ -параметризованном ее обходе: односторонними для точек разрывов u двухсторонними для кратных точек.

3. Симметрии полиполярной координации

Симметрии фокусов и лемнискат. Сохраняя в сжатом виде информацию о форме представляемой кривой, фокусная структура наследует и симметрии ее формы, в отличие, например, от системы свобод гармонического представления. С другой стороны, лемниската, однозначно определяясь фокусной структурой, содержит в своей форме фокусные симметрии.

Группа симметрий лемнискаты Бернулли состоит, как известно, из зеркальных отражений относительно двух ортогональных осей, что эквивалентно центральной симметрии. Такой же группой симметрий обладает и фокусная структура, состоящая из двух фокусов (2f-структура всегда симметрична и обладает постоянной группой симметрий, отражение от одной из осей вырожденное). Фокусная структура, состоящая из трех и более фокусов, может быть как симметричной, так и несимметричной и в зависимости от конфигурации может иметь разную группу симметрий. На рис. 2a представлено, как отмечалось выше, семейство лемнискат со структурой фокусов не симметричной формы, а на рис. 26, напротив, фокусная структура имеет правильную 4f-форму (фокусы расположены в вершинах квадрата) и обладает всеми симметриями квадрата. Той же группой симметрий обладают и соответствующие лемнискаты. Обобщая, можно сформулировать утверждение.

Лемниската и ее фокусная структура имеют одну и ту же группу симметрий.

В основе этого утверждения лежит порождающий инвариант (1), а также то обстоятельство, что и фокусная структура, и соответствующая ей лемниската имеют представление в одной и той же системе координат, а значит, выдерживают преобразования, сохраняющие форму. Порождающий инвариант, как следует из (1), представляет собой мультипликативную композицию расстояний между точками, что ограничивает данное исследование рассмотрением преобразований метрического пространства, сохраняющих расстояния и форму. Такие преобразования, являющиеся, как известно, ортогональными, образуют группу подобия, которая порождает группу симметрий, включающую переносные, масштабные, поворотные симметрии и отражения. Порождающий инвариант (1) может быть расширен рассмотрением не только евклидовых расстояний [Ракчеева, 2007b], что ставит ряд новых интересных задач, но в настоящей работе мы ограничимся рассмотрением указанных преобразований и симметрий.

Доказательство сформулированного утверждения распадается на две части.

Для доказательства прямого утверждения можно предположить наличие у фокусной структуры некоторой группы плоских симметрий, содержащей перенос, отражение, поворот или растяжение, и вычислить инвариантный функционал радиуса (1) для произвольной точки (x, y) и симметричной ей точки (x, y). Полученное равенство радиусов $R^k = R'^k$ для симметричных точек в силу однозначности соответствия радиуса определенной лемнискате будет свидетельствовать о наличии у лемнискаты данной группы симметрий. Так, kf-структура с переносной симметрией даст лемнискату с такой же переносной симметрией, а с масштабной симметрией – лемнискату с другим радиусом, соответствующим масштабному коэффициенту преобразований фокусов. Следствием α -поворотной симметрии kf-структуры будет лемниската с α -поворотной симметрией – точки (x, y) и (x, y), связанные соответствующим преобразованием, будут иметь одно и то же расстояние до фокусной структуры с точностью до порядка входящих в функционал k фокусных расстояний r_i .

Доказательство обратного утверждения об отсутствии у лемнискаты иных симметрий выполняется аналогично. Предположив наличие у лемнискаты какой-либо из указанных симметрий формы, выражаемой в равенстве соответствующих инвариантных функционалов $R^k = R'^k$ для симметричных точек (x, y) и (x', y'), из уравнения $R^k = R'^k$ с необходимостью получаем соотношение для координат фокусов, соответствующее данной симметрии у фокусной структуры. Такое доказательство не составляет принципиальных трудностей для каждой конкретной группы симметрий, но представляет технические трудности для общего случая. В связи с этим, более целесообразным представляется другое доказательство.

Рассмотрим произвольную kf-лемнискату L_s , порождаемую структурой k фокусов. Любая фокусная структура является предельной формой софокусного семейства лемнискат при стремлении радиуса ρ к нулю. Значит, в связи с выше изложенным (часть 2), для любого сколь угодно малого ε лемниската L_ε в ε -окрестности фокусов данной kf-структуры имеет ту же φ -параметризацию, что и любая другая софокусная лемниската, в том числе и рассматриваемая лемниската L_s . Поворотная симметрия для произвольной пары симметричных точек (x, y) и (x', y') на L_s имеет соответствующую симметрию φ -параметризации на ней и на лемнискате L_ε в ε -окрестности ее kf-структуры. При устремлении ε к нулю получим k точек фокусной структуры. Таким образом:

 ϕ -параметризация устанавливает соответствие симметрий произвольной kf-лемнискаты u ее фокусной структуры.

Симметрии полиполярной плоскости. Фокусную группу симметрий наследует и каждая лемниската в отдельности, и все семейство в целом. Симметрии kf-структуры порождают те же симметрии всей полиполярной системы координат, состоящей из семейства софокусных лемнискат и сопряженного семейства градиентных кривых.

Таким образом, группу симметрий полиполярной плоскости определяет группа симметрий фокусной структуры – структурного начала системы координат.

На полиполярной плоскости реализуются классические плоские симметрийные конструкции: отражения, поворотные и др. Для построения симметрий расчеты всех преобразований выполняются в полиполярных координатах ρ , φ . В АСО-координатах построенные симметрии представляют собой композицию полиполярных симметрий и симметрий структурного начала координат ППЛ.

Полиполярная лемниската в kf-ЛСК, как указывалось выше, играет такую же роль, что и окружность в классической полярной СК. Относительно единичной kf-лемнискаты возможно построение тех же групп симметрий: поворотов, отражений, инверсий — криволинейных симметрий на многофокусных лемнискатах. На рис. 3a приведены иллюстрации подобных симметрийных построений для некоторого мотива. Такие преобразования для произвольных форммотивов возможны как для односвязной (рис 3a внизу), так и для многосвязной (рис. 3a вверху) лемнискаты-окружности.

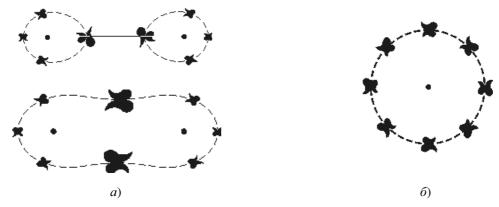


Рис. 3. Симметрии поворота и отражения для 2f-структуры

Фокусное представление полиполярной окружности позволяет менять ее симметрии и формы мотива, управляя фокусами.

Сближая фокусы kf-структуры в одну точку, получим обычную окружность с визуально идентичной формой мотива.

Действительно, произвольная точка с координатами (ρ_1 , φ_1) некоторого мотива имеет соответствующие данной группе симметрий точки (ρ_i , φ_i), где i=2,...,m, в других мотивах (m количество мотивов). В случае, например, поворотной симметрии, представленной на рис. 3, данные точки имеют одно и то же значение метрической координаты $\rho_i = \rho_0$ и отличающиеся на $\Delta \varphi_0$ значения ориентационной координаты $\varphi_i = (i-1)\Delta \varphi_0$, i=1,...,m. Осуществляя непрерывный предельный переход kf-структуры в точку, указанные соотношения между выделенными точками сохраняются. В пределе, как было показано выше, любая kf-лемниската трансформируется в окружность. Значит, данные точки окажутся на окружности, отличаясь по угловой координате на те же $\Delta \varphi_0$. Поскольку это относится к произвольной точке произвольного мотива, все мотивы окажутся одинаковыми, расположенными на окружности через равные угловые интервалы (рис. 3 δ).

Комбинирование симметрий kf-лемнискат и форм-мотивов позволяет получить большое разнообразие орнаментов как розеточного типа, так и паркетного, а интерактивное управление фокусами в компьютерном эксперименте дает возможность непрерывной трансформации орнамента во времени.

Симметрии формы. Лемнискаты при неограниченном увеличении значения радиуса от k несвязных петель трансформируются в пределе в окружность, теряя индивидуальную форму и сохраняя симметрии. Окружность имеет другую, более широкую группу симметрий, и поэтому с ростом радиуса наблюдается непрерывный предельный переход одной формы в другую, но переход одной группы симметрий в другую происходит дискретно (рис. 1a, 6; рис. 2a, δ). Представляется целесообразным ввести количественный параметр степени реализации симметрий формы, — используя фокусное представление формы, такой параметр естественно связать с радиусом. Можно также предложить определение количественной меры формы через число степеней свободы, переводящих произвольную форму со своей группой симметрий в окружность, — универсальную единую для всех форму с максимальной группой симметрий.

Заключение

Полиполярная система координат представляется хорошо организованной криволинейной СК, характеризующей точку плоскости полиполярным радиусом ρ и полиполярным углом φ . Объектами ППЛ являются: структурное начало, состоящее из конечного множества фокусов и определяющее ее симметрии, а также взаимно ортогональные сопряженные координатные семейства лемнискат ρ = const и градиентных кривых φ = const. При этом метрическая координата φ рассматривается как расстояние до структурного начала, а ориентационная координата φ – как направление на структурное начало полиполярной системы координат.

Особенностью полиполярной системы координат является широкий диапазон применимости от универсальности до узкой специализации. Такая особенность является следствием возможностей рассматриваемого класса функций – многофокусных лемнискат, которые допускают множество самых разнообразных приложений. Одним из наиболее значительных приложений является аппроксимация эмпирических кривых [Ракчеева, 2008]. Манипулируя положением фокусов и их количеством, можно решать также задачу интерактивной генерации форм для дизайнерских, диагностических и других целей. С формой любого конкретного предметного образа можно связать его собственную систему координат. Метрическая компонента при этом может быть произвольной, достаточно сложной, настраиваемой вручную или автоматически, и при любой форме метрической компоненты угловая компонента получается ортогональной к метрической. В таким образом организованной собственной полиполярной системе координат реализуемы разного рода представления, преобразования и симметрии.

Список литературы

- Hilbert D. Gessamelte Abhandlungen. Berlin: Springer, 1935. Bd. 3. P. 435.
- Маркушевич А.И. Теория аналитических функций, т. 1. М.: Наука, 1967. С. 486.
- *Ракчеева Т. А.* Приближение кривых: фокусы или гармоники // МКО. Сборник научных трудов. Вып. 14, т. 2. Москва–Ижевск, 2007а. С. 83–90.
- Ракчеева Т. А. Квазилемнискаты в задаче приближения // Третьи Курдюмовские чтения: Синергетика в естественных науках: Материалы международной междисциплинарной научной конференции. Тверь, 2007b. С. 113–117.
- *Ракчеева Т. А.* Приближение кривых многофокусными лемнискатами на комплексной плоскости // МКО. Сборник научных трудов. Вып. 15, т. 2. Москва–Ижевск, 2008. С. 68–75.
- *Ракчеева Т. А.* Полиполярная лемнискатическая система координат // Компьютерные исследования и моделирование. Том 1. № 3. Москва–Ижевск, 2009. С. 251–261.