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Combat operations modeling is an urgent scientific and practical task aimed at providing commanders and 

headquarters with quantitative basis for making decisions. The authors proposed the function of victory in com-
bat and military operations, based on the function of the conflict by G. Tullock and taking into account the scale 
of combat (military) operations. With a sufficient volume of military statistics, the scale parameter was assessed 
and its values were found for the tactical, operational and strategic levels. The game-theoretic models «offen-
sive – defense», in which the sides solve the immediate and subsequent tasks, having the formation of troops in 
one or several echelons, have been investigated. At the first stage of modeling, the solution of the immediate task 
is found — the breakthrough (holding) of defense points, at the second — the solution of the subsequent task — 
the defeat of the enemy in the depth of the defense (counterattack and restoration of defense). For the tactical 
level, using the Nash equilibrium, solutions were found for the closest problem (distribution of the sides forces at 
points of defense) in an antagonistic game according to three criteria: a) breakthrough of the weakest point, 
b) breakthrough of at least one point, and c) weighted average probability. It is shown that it is advisable for the 
attacking side to use the criterion of «breaking through at least one point», in which, all other things being equal, 
the maximum probability of breaking through the points of defense is ensured. At the second stage of modeling 
for a particular case (the sides are guided by the criterion of breaking through the weakest point when breaking 
through and holding defense points), the problem of distributing forces and facilities between tactical tasks 
(echelons) was solved according to two criteria: a) maximizing the probability of breaking through the defense 
point and the probability of defeating the enemy in depth defense, b) maximizing the minimum value of the 
named probabilities (the criterion of the guaranteed result). Awareness is an important aspect of combat opera-
tions. Several examples of reflexive games (games characterized by complex mutual awareness) and information 
management are considered. It is shown under what conditions information control increases the player's payoff, 
and the optimal information control is found. 
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Моделирование боевых действий является актуальной научной и практической задачей, направлен-

ной на предоставление командирам и штабам количественных оснований для принятия решений. Авто-
рами предложена функция победы в боевых и военных действиях, основанная на функции конфликта 
Г. Таллока и учитывающая масштаб боевых (военных) действий. На достаточном объеме данных воен-
ной статистики выполнена оценка параметра масштаба и найдены его значения для тактического, опера-
тивного и стратегического уровней. Исследованы теоретико-игровые модели «наступление – оборона», 
в которых стороны решают ближайшую и последующую задачи, имея построение войск в один или не-
сколько эшелонов. На первом этапе моделирования находится решение ближайшей задачи — прорыв 
(удержание) пунктов обороны, на втором — решение последующей задачи — разгром противника в глу-
бине обороны (контратака и восстановление обороны). Для тактического уровня с использованием рав-
новесия Нэша найдены решения ближайшей задачи (распределение сил сторон по пунктам обороны) 
в антагонистической игре по трем критериям: а) прорыв слабейшего пункта; б) прорыв хотя бы одного 
пункта; в) средневзвешенная вероятность. Показано, что наступающей стороне целесообразно использо-
вать критерий «прорыв хотя бы одного пункта», при котором, при прочих равных условиях, обеспечива-
ется максимальная вероятность прорыва пунктов обороны. На втором этапе моделирования для частного 
случая (стороны при прорыве и удержании пунктов обороны руководствуются критерием прорыва сла-
бейшего пункта) решена задача распределения сил и средств между тактическими задачами (эшелонами) 
по двум критериям: а) максимизация вероятности прорыва пункта обороны и вероятности разгрома про-
тивника в глубине обороны; б) максимизация минимального значения из названных вероятностей (кри-
терий гарантированного результата). Важным аспектом боевых действий является информированность. 
Рассмотрены несколько примеров рефлексивных игр (игр, характеризующихся сложной взаимной ин-
формированностью) и осуществления информационного управления. Показано, при каких условиях ин-
формационное управление увеличивает выигрыш игрока, и найдено оптимальное информационное 
управление. 
 

Ключевые слова: математическая модель, бой, наступление, оборона, функция победы, 
теоретико-игровая модель, рефлексивное и информационное управление 
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1. Introduction 

Control of troops is a purposeful activity of commanders, headquarters and other command and 
control bodies to maintain the combat readiness and fighting capacity of troops, prepare them for bat-
tle and guide them in the performance of assigned tasks [Taktika, 1987]. The two main phases of troop 
command and control (preparation and conduct of combat operations) can be associated with a set of 
models, the classification of which is shown in fig. 1. 

 

 

*WME — Weapons and Military Equipments 

Fig. 1. Classification of combat operations’ models 

At the stage of preparation, in the general case the modeling of combat operations comes down to 
finding the deployment of troops (deployment of forces and facilities to the area, their allocation), in 
which the maximum possible damage is inflicted on the enemy. 

The sequence of modeling may be as follows. 
At the first stage, the tactical characteristics of combat assets are analyzed and calculate the pa-

rameter of the combat superiority of the formation (unit, small/large unit) over the enemy formation 
expected in the fight, battle, operation in moral and technological sense are computed (possibly with 
the involvement of experts) [Buravlev, Tsyrendorzhiev, Brezgin, 2009; Dorokhov and Ishchuk, 2017]. 

At the second stage, the type of the formation victory function is selected [Shumov, 2020]: indi-
cator (Colonel Blotto's game [Application, 1961]) or probabilistic type, and in the second case, based 
on the ratio (Yu. B. Germeier [Germeier, 1971], the function of G. Tullock [Tullock, 1980]), or on the 
force difference (the model of D. McFadden and D. Hirschleifen [Jia, Skaperdas, Vaidya, 2013]). 

The third stage of modeling usually consists in setting the game-theoretic task «offensive – de-
fense» and finding optimal solutions for the distribution of troops between tasks and points (regions, 
positions). If it is possible, planning (prediction) of offensives during the breakthrough of the defense 
and in its depth is also carried out, as well as proof for activities to mislead the enemy. 

At the final stage, the model is verified, computation results are checked for compliance with the 
principles of military art and combat experience (the evidence of the «correctness» of the models is the 
compliance of the simulation results with the principles of military art [Osipov, 1915]). 

The conduct of combat operations (the second phase of control) is explored during military 
games, exercises and combat trainings conducted using simulation and other models and decision sup-
port systems with different extents of automation during the process of combat actions [Novikov, 
2012; Aggregated, 2000] and is not the subject of this paper. 
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The Russian General Mikhail Pavlovich Osipov is considered to be the founder of the simulation 
of combat operations. In his work «The influence of the number of combatants on their losses» [Osi-
pov, 1915], published in 1915 in the «Military collection» (now the journal «Military Thought»), he 
elaborated a model of battle dynamics based on an analysis of the results of 38 battles of standing 
troops from the 19th and 20th centuries, the solution was found, and the model parameters were esti-
mated. 

Formal justification of the Osipov – Lanchester models [Osipov, 1915; Lanchester, 1916] (mean 
dynamics method) can be found in [Wentzel, 1964]. The basic concepts of the theory of antagonistic 
games were developed by E. Borel [Borel, 1921]. In Russia and abroad, models of combat operations 
were developed within the scientific discipline framework «Operations research» (see, for example, 
the works [Germeier, 1971; Krasnoshchekov, Petrov, 1983; Vasin, Morozov, 2003; Vasin, 2005; Va-
sin, Krasnoshchekov, Morozov, 2008; Morse and Kimball, 1951; Karlin, 1964; Wagner, 1972]). The 
classical game-theoretic problem «offensive – defense» was formulated and solved by Yu. B. Germei-
er [Germeier, 1971] (as the O. Gross model modification), where two sides allocate limited resources 
among defense points. 

An overview of papers on modeling combat operations can be found in the article by 
D. A. Novikov «Hierarchical models of warfare» [Novikov, 2012], where the Lanchester models, the 
game of Colonel Blotto (a game where two sides simultaneously and independently distribute their 
resources between objects — battlefields, simultaneous competitions / auctions, groups of voters, etc.), 
as well as conflict functions of indicator and probabilistic types are considered. 

Subjects make decisions based on a hierarchy of ideas about essential parameters, and inevitably, 
for one reason or another, there is a discrepancy between ideas (reflexive reality) and objective reality. 
A systematic study of reflexion in Control Science began in the 60s of the XX century [Lefevre, 
1973], in the last decade a set of mathematical models of information and strategic reflexion has been 
developed [Novikov, Chkhartishvili, 2012]. 

The purpose of this paper is to generalize and elaborate the results of combat operations simula-
tions [Korepanov, Novikov, 2011; Shumov, 2019; Shumov, Korepanov, 2020; Shumov, Korepanov, 
2021] in the following directions: 

 firstly, the statistical justification of the function of victory in a fight, battle, operation, taking 
into account the moral and technological characteristics of combat units, the scale of combat 
operations; 

 secondly, the development of game-theoretic «offensive – defense» models, in which the offen-
sive side solves two tasks: the first-phase one (breaking through the enemy’s defense) and the 
subsequent one (destroying the enemy’s reserves, capturing an object in the depths of the de-
fense). Note that in the existing game-theoretic models only the first task is formalized, i. e. 
such models can be called, for example, counter-fight models, but not offensive (defense) mod-
els; 

 thirdly, considering the awareness of the sides in the battle models. 
Thus, a feature of the combat models considered below is the use of functions of victory in them, 

expressing the antagonistic nature of the conflict: rise in the efforts of the first side increases its chanc-
es of success, as well as a fall in the efforts of the second side [Hirshleifer, 2000]. The main emphasis 
in this work is on the analysis of the victory functions and the solution of game-theoretic problems of 
the optimal distribution of resources over tasks and directions (objects, points). 

2. The «offensive – defense» game-theoretic model 

The game-theoretic «offensive – defense» model is a development of the Gross – Germeier –
Vasin «attack – defense» models [Karlin, 1964; Germeier, 1971; Vasin, Morozov, 2003], where the 
task of breaking through defense points is studied. The function of victory in a fight (battle, operation) 
is used as an aggregated function of combat technology. 
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2.1. The function of victory in fight, battle, operation 

In the general case, the functions of the conflict (competition) are divided into (classification ba-
sis — a justification method of the model): probabilistic or stochastic models; models built on the ba-
sis of axioms (assumptions); competitive and auction models based on the economic mechanism de-
sign, models based on aggregation of microeconomic indicators (submodels). 

Assume that two sides are involved in a conflict (competition, auction). Their efforts (resources) 
will be denoted by x > 0 and y > 0, respectively. Any combination of the efforts of the sides is as-
signed with the probability of success (victory) — px(x, y) and py(x, y). The following functions of vic-
tory class is well studied: 

 
( )

( , )
( ) ( )
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p x y

f x f y
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, (2.1) 

where fx() and fy() — non-negative, strictly increasing functions. We note the most common function-
al forms of model (2.1). Model of G. Tullock 
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where  > 0 — parameter of the decisiveness of the sides, belongs to the class of models based on the 
ratio of efforts (the result depends on the ratio of the efforts of the sides). The model by D. McFadden 
and D. Hirschleifer 
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belongs to the class of models based on efforts difference. The probit model belongs to the same class: 
( , ) ( )xp x y x y   , where Ф — the Laplace function. 

Historically, the first victory function used in combat simulation is the Gross – Germeyer victory 
function. In [Germeyer, 1971], the following goal function of offense is considered (the total number 
of offensive facilities that have broken through all defense points): 
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where i — the number of offensive facilities that can be destroyed by one unit of defense facilities at 
point i, xi(yi) is the number of offensive (defense) facilities, n is the number of defense points. Let’s 
restore the function of victory from the Yu. B. Germeyer’s model. Note that the last expression uses 
the following probability of breaking through the defense point i 
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and the number of units that have broken through is defined as the product πx(xi, yi) times xi. I. e. when 
x(xi, yi) = 0 the probability of victory px(xi, yi) = 0.5, because i xi = yi. It is natural to assume that 
px(xi, yi) = 1 for yi = 0. Let’s consider the simplest — linear in px(xi, yi) case of a victory function form: 
2px(xi, yi) – 1 = x(xi, yi) . Then we get: 
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It is difficult to meaningfully explain the presence of the factor 2 in the numerator and denomina-
tor in the victory function of Yu. Germeyer and the use of the forces’ difference function. 

Let’s specify the drawbacks of the goal function of the form (2.2). It has proven in military sci-
ence [Osipov, 1915] that every battle is a psychological act, ending with the refusal of one of the par-
ties. Therefore, during the battle, the fighters are divided into three groups: actively participating in the 
battle; killed or wounded; those who refused to participate in the battle (deserters, illness simulators, 
etc.). In model (2.2), the third group is not taken into account; by default, it is assumed that the number 
of units that have broken through is equal to the difference between their total number and the number 
of units that have been hit. 

In A. A. Vasin and N. I. Tsyganov works [Vasin, Tsyganov, 2021; Vasin, Tsyganov, 2021a] the 
analytical dependence of the form of the victory function on the battle scale (root square of geometric 
mean of the initial numbers of sides) was studied for the first time. 

S. Skaperdas et al. note that only a small number of publications address the issues of verifying 
conflict functions on real data in spite of a significant number of publications on modeling conflicts, 
competitions and auctions in various fields of activity [Jia, Skaperdas, Vaidya , 2013]. 

Let’s consider the G. Tullock conflict function’s extension in order to modeling fight, battle, op-
eration. Let us define the probability of victory of the first side by the formula [Shumov, 2020]: 

 
( )

( , ) ,   0
( ) ( ) 1

m m

x m m m

x q x
p x y q

x y q y
   

 
 


, (2.4) 

where:  > 0 — the parameter of the combat (moral and technological) superiority of the first side 
over the second; q is the ratio of the forces of sides; m is the form parameter (scale of combat opera-
tions). In the general case, technological (tactical) superiority (and the value of the parameter ) is de-
termined, firstly, by the tactical and technical characteristics of forces and facilities of the sides, and, 
secondly, by the characteristics of the ground and the degree of its preparedness for combat opera-
tions. 

If we make substitution of a variable q, we get the Pareto distribution: 
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which has the property of self-similarity (the distribution of values exceeding z0  1 is also the Pareto 
distribution). In essence, this means that the combat operations of a battalion, regiment can be de-
scribed by the same distribution as the combat operations of the division in which they operate. The 
mathematical property of self-similarity corresponds to the most important principle of military art, 
which requires considering the same factors that determine the success of any fight, battle, and opera-
tion [Rech, 1985]. 

Let’s list features of the victory function (2.4). First, the probability of the victory of the second 
side is the probability of the loss of the first, i.e. py(x, y) = 1 – px(x, y). Second, the function px(x, y) is 
strictly increasing in x and strictly decreasing in y. Thirdly, the function is symmetrical or anonymous 
(if the efforts of the parties are reversed, then their probabilities of victory will also change) and be-
longs to the class of models based on the ratio of forces, which fits to the established practice of opera-
tional-tactical calculations [Morse, Kimball, 1951; Tsygichko, Stoili, 1997]. Fourthly, within one form 
of combat (military, special) operations, the victory function is a homogeneous function of zero de-
gree, i. e. py(tx, ty) = py(x, y), t > 0. Fifth, the shape parameter m of the victory function allows us to 
consider the features of special operations (fight against irregular enemy formations), combat opera-
tions on the tactical and operational levels, military operations (strategic operations). 

An analytical estimation of the parameter  of combat superiority follows from the definition of 
a battle (a set of strikes, fires and maneuvers of troops coordinated in terms of purpose, place and 
time) and was studied earlier [Shumov, 2020]. Statistical estimation of the parameter  was performed 
by the maximum likelihood method. 
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For a statistical estimation of the form parameter, it is necessary to collect and process data about 
the results of fights, battles, operations (outcome of the conflict, list of units, etc.). Statistical data of  
operational and strategic levels are presented in literature (see [Osipov, 1915], [Velikaya, 2010], etc.), 
but at the tactical level (battles involving joint arms and other units) we have little reliable data due to 
the following reasons: firstly, it is necessary to compare archival data about number and combat com-
position of the parties, including Inter-Entity Boundary Lines; secondly, one formation (unit, 
small/large unit) can operate on the edge of the enemy, and it is not always possible to reveal from 
archival data the strength of the enemy in a battle even if the initial data were available; thirdly, com-
bat operations are dynamic and during a battle strengths of two sides can change significantly (intro-
duction of new units into battle, withdrawal of units to the reserve or moving to a new area). In this 
regard, to assess the shape parameter at the tactical level, an international database of incidents in mar-
itime space was used, according to which it is possible to accurately determine strengths of the parties 
and the outcome of a conflict. 

On fig. 2 the proportion of successful piracy and robbery acts at sea, according to international 
statistics of incidents in maritime space for 2010–2020 are shown (sample size n = 714, estimate of the 
pirate superiority parameter  = 1,42) [Shumov, Sidorenko, Caesar, 2021]. 

The shape parameter is equal to m = 1 with a significance level of 0,05 according to the Fisher's 
chi-square statistical test (at 6 degrees of freedom). 

 

 

Fig. 2. Shares (vertical axis) of successful piracy and robbery at sea on q — the ratio of forces of sides (horizon-
tal axis) 

On fig. 3 shares of victories of the strongest side in terms of numbers of the XIX – early. XX cen-
turies are shown (data taken from [Osipov, 1915], parameter  = 1, sample size n = 38). The shape 
parameter is m = 3 with a significance level of 0,01 according to Pearson's chi-square statistical test 
(at 4 degrees of freedom). 

On fig. 4 shares of the victories of the strongest side in terms of numbers in strategic defensive 
and offensive operations during the Great Patriotic War of 1941–1945 are shown (data taken from 
[Velikaya, 2010], parameter  = 1, sample size n = 46). 

The shape parameter is equal to m = 3 with a significance level of 0,01 according to the Pearson 
chi-square statistical test (at 4 degrees of freedom). 

From formula (2.4) we find the required ratio of forces q to defeat the enemy with a given proba-
bility px: 

 
1

x
m

x

p
q

p
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Results of calculations are presented in table 1. 
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Fig. 3. Shares (vertical axis) of victories of the strongest side in the battles of the XIX – early. XX centuries on q 
(horizontal axis) 

 

 

Fig. 4. Shares (vertical axis) of victories of the strongest side in strategic operations during the Great Patriotic 
War on q (horizontal axis) 

Table 1. Necessary superiority over the enemy 

Probability of defeating 
an enemy, px 

Parameter m of model shape (2.6) 
m = 0,5 m = 1 m = 2 m = 3 

0,7 5,4 : 1 2,3 : 1 1,5 : 1 1,3 : 1 
0,75 9,0 : 1 3,0 : 1 1,7 : 1 1,4 : 1 
0,8 16,0 : 1 4,0 : 1 2,0 : 1 1,6 : 1 
0,9 81,0 : 1 9,0 : 1 3,0 : 1 2,1 : 1 

 
With the prevalence of non-traditional forms of combat (attacks from ambushes, partisan actions, 

etc.) and when modeling counter terrorist and special military operations, it is advisable to use the val-
ue of the form parameter m = 0,5. To achieve a high probability of victory, it is necessary to ensure 
multiple superiority in forces and facilities over the enemy. For example, a probability of victory 
of 0,75 is achieved with a combat superiority over the enemy q = 9. This result is confirmed by the 
practice of counter terrorist and special military operations: the experience of internal conflicts indi-
cates that the ratio of the number of government troops to insurgents should be between 8 : 1 to 10 : 1 
(i. e. eight to ten units to one). Many Western states proceed precisely with such indicators when de-
termining the size of law enforcement forces [Kontrterroristicheskaya, 2000]. 

The actions of subunits and units in the offensive and defense can be described by the model of 
the relation of forces with the value of the form parameter m = 1. In this case, the probability of victo-
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ry of 0,75 is achieved with a triple superiority in forces and facilities over the enemy, which corre-
sponds to the prevailing ideas about conducting joint arms combat. 

When modeling the actions of divisions (corps, armies) in a battle (operation), it seems reasona-
ble to use the value of the form parameter m = 2–3. Here the success of the battle (operation) is almost 
guaranteed with a 2–3x overall superiority over the enemy forces and facilities. President of the Acad-
emy of Military Science, army General M. A. Gareev noted that during the Great Patriotic War there 
was not a single successful defensive operation carried out by much smaller forces than that of the ad-
vancing enemy. It is possible to repulse attacks of superior enemy forces at the tactical level, but not at 
the operational-strategic level [Ionin, 2005]. 

Consequently, meaningful and statistical estimates of the form parameter of the victory function 
give reason to believe that the form parameter reflects the nature and scale of combat actions. The cur-
rent scientific task is a statistical estimation of the form parameter of the victory function in counter-
terrorist and special operations, characteristic of which are the following: firstly, the enemy’s desire to 
get lost in a crowd of civilians, if possible, and secondly, the purpose of the operation is not only to 
defeat the enemy, but also its neutralization, preventing exit from a certain area, for which special el-
ements of the battle order are created (blocking and cover groups, filtration points, etc.). 

2.2. Statement of the modeling problem 

Let there be n defensive points (districts, sections, lanes) numbered i = 1, ..., n, where a break-
through by the offense is possible. Let's denote Rx and Ry — the number of combat facilities of the of-
fensive (player O) and defenders (player D). Resources Rx and Ry are assumed to be infinitely divisi-
ble, which will make it possible to consider the actions of their own, attached and supporting facili-
ties/units, when their efforts are alternately directed to various points and tasks. 

The offense side consists of combat units designed to solve the nearest (breaking through the en-
emy defense) and subsequent (repulse a counterattack of the enemy’s reserves, occupying a line or an 
object in the depths of the defense) tasks. The player O facilities vector: 

 1
1

( ,..., , ) | ,   ,   ,
n

n i x x x i
i

x x x u X x x u R r R u x u 



 
        

 
 , (2.7) 

where: xi ≥ 0 — the number of facilities for solving the nearest task (the first echelon) operating at the 
point i; rx — the total number of facilities for solving the nearest problem; u > 0 — the number of fa-
cilities for solving the subsequent problem (second echelon). 

The defending side consists of troops of first echelon and reserve (or second echelon). The task 
of the first echelon is to prevent a breakthrough of defense points, the task of the reserve (second eche-
lon) is to counterattack in the event of a breakthrough of the defense or to hold the second line of de-
fense. Facilities vector of player D: 

 1
1

( ,..., , ) | ,   ,   ,
n

n i y y y i
i

y y y w Y y y w R r R w y w 



 
        

 
 , (2.8) 

where yi ≥ 0 is the number of first-echelon facilities defending point i; ry is the total number of facili-
ties for solving the first objective (holding defense points); w > 0 — the number of reserve facilities 
intended for counterattack in the event of a breakthrough (second objective). 

Let‘s assume that the sides have common knowledge, make decisions simultaneously and inde-
pendently. Then we have an antagonistic game (the gain of the first side is the loss of the second), and 
in order to find optimal solutions, one should find the Nash equilibrium. 

Using known methods of game theory [Germeyer, 1971; Vasin and Morozov, 2005; Pisaruk, 
2019] the authors have developed a game-theoretic model of combat operations, which is presented 
below. 
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2.3. Optimal distribution of forces and facilities when breaking through defense points 
(criterion — breaking through the weakest point) 

When modeling a battle, the goal function of Yu. B. Germeyer [Germeier, 1971] is often used as 
a criterion: 

 
1

( , ) max[ ,0]
n

i i i
i

f x y x y


  , (2.9) 

where i is the number of facilities of offensive that one unit of facilities of defense at the point i can 
destroy. It has been shown (see [Shumov, Korepanov, 2021]) that this goal function corresponds to the 
probability of victory in a battle of the form: 

 
2

( , ) ,   2 ,  1 /
2
i i i

x i i i i i i i
i i

x y
p x y x y

x


  




   . (2.10) 

It is meaningfully difficult to explain the presence of the factor 2 in the numerator and denomina-
tor in the victory function of Yu. Germeyer (2.10) and the use of the forces difference. Another draw-
back of the goal function (2.9) is the assumption that the number of advancing combat units that have 
broken through is equal to the number of undestroyed ones. This assumption is valid when modeling 
unmanned combat units. At the same time, this assumption contradicts the principles of combined 
arms management and modeling. According to M. Osipov, «victory does not depend on the duration 
of the battle, but mainly on the losses suffered by the sides; therefore, it would be more correct to as-
sume that the battle lasts until the losses of one of the sides reach a certain percentage. On average, 
20 % can be considered as such percentage...» [Osipov, 1915]. In other words, combat units are divid-
ed into three groups: struck (wounded), fighting and evading combat [ibid]. 

The probability of solving the first-phase objective by offensive is defined as (m = 1, tactical 
level) 

 
1,...,

( , ) max i i

i n
i i i

x
f x y

x y







,  
1 1

,   
n n

i x i y
i i

x r y r
 

    (2.11) 

(strike at the weakest point of the enemy's defense). The goal function (2.11) uses the probabilistic 
function of victory in the conflict, which corresponds to the tradition of military modeling and doesn’t 
have disadvantages noted above. 

Meaningfully, the goal function (2.11) reflects the desire of the offensive to break through de-
fense at the enemy's weakest point. The goal of the defenders is to prevent a breakthrough at this point, 
the goal function is 1 – f(x, y). We have an antagonistic game. Let's assume that the durations of the 
cycles of combat operations of the sides are approximately equal, then there is reason to believe that 
the sides make decisions independently and simultaneously and to find a solution using the Nash equi-
librium. 

It was proven [Shumov, Korepanov, 2021] that the optimal strategy of the defender (distribution 
of the resource among defense points) is equal to 

 0 0

1

: i i
i y yn

j
j

y y r r
B

 




 


,  

1

n

j
j

B 


 ,  i = 1, …, n, (2.12) 

and the offensive uses a mixed strategy, allocating the entire resource to the point i with probability 

 0 i
i B


  ,  i = 1, …, n. (2.13) 
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In this case, the value of the game is equal to 

 x

x y

r B
v

r B r



. (2.14) 

If the points of defense are homogeneous ( = 1 = 2 = … = n), then the value of the game is 
equal to 

 x

x y

n r
v

n r r







. (2.15) 

The weakness of self-defense directly follows from the last expression — with the growth of the 
number of defense points, the effectiveness of the offensive increases significantly. 

It is important to note that the optimal solutions of the sides (2.12) and (2.13) do not depend on 
the expected number of enemy combat units. The solutions are wholly and completely determined by 
the characteristics of the terrain and the structure of the formations of the sides involved in combat 
operations taken into account in the parameter . 

2.4. Optimal distribution of forces and facilities when breaking through defense points 
(criterion — breaking through at least one point) 

In some cases, the task of breaking through defense points at the tactical level (m = 1) can be de-
scribed by the goal function of the player O in the form: 

 
1 1

( , ) 1 (1 ( , )) 1
n n

i
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1

n
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i

x r

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1

n

i y
i

y r


  (2.16) 

(the probability of breaking through at least at one point of the enemy's defense). 
The solution of the problem will not change if the goal function is written in an equivalent form: 
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
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 . (2.17) 

Let’s consider function: 

 ( , ) ln 1
x

h x y a
y

 
  

 
,  x,y,c > 0.  

Its partial derivatives with respect to the variable y are 

 2 1[ ]yh ax axy y     , 2 2( 2 )[ ] 0yh ax ax y axy y      .  

Consequently, h(x, y) is convex and the function (2.17) is convex in y (sum of convex functions is 
convex). Similarly, it is easy to show that the function (2.17) is concave in x. Therefore, there exists 
a solution to the game in pure strategies (see [Vasin, Morozov, 2005]), and the value of the game is 
equal to the upper and lower costs of the game (which are the same): 

 max min ( , ) min max ( , )
y Y y Yx X x X

v v g x y g x y v
  

   .  
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To find the game solution, we compose two Lagrange functions, find their derivatives and set 
them equal to zero: 

 ( , ) ln 1i
i i xi

ii
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


   

 
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Let’s transfer  and  to the right parts of the equations and divide (2.19) by (2.18): 
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With the restrictions 
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  from (2.20) we have: 
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Then from (2.18) and (2.21) we find 
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The game value equal to: 
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2.5. Optimal distribution of forces and facilities when breaking through defense points 
(criterion — weighted average probability of a breakthrough) 

Let defense points be characterized by values Vi > 0, i = 1, …, n, then the goal functions of the 
sides at the tactical level (m = 1) will have the form (weighted average values of the probabilities of 
capturing/breakthrough points): 
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(a game with constant sum). 
In the antagonistic game (2.25), (2.26), the optimal strategies of the sides are equal to (see the 

probabilistic model [Novikov, 2012, pp. 33–36]) 
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In an equilibrium situation, the values of the goal functions are equal to: 
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Example 2.1. Let rx = 200, ry = 100, 1 = 1, 2 = 0,5, 3 = 0,5, V1 = V2 = V3 = 1/3, n = 3. Let’s 
find the optimal strategies of the sides and the game value according to three criteria for breaking 
through points of defense. 

The calculation results are presented in the form of a table: 
 

Criteria Breaking through the 
weakest point (2.11) 

Breaking through at 
least one point (2.16) 

Weighted average prob-
ability of a break-

through (2.25), (2.26) 
Offensive optimal 
strategy (player O) 

Probabilities of choos-
ing a point to strike with 

all forces: 
0,5; 0,25; 0,25 

Units distribution on 
defense points: 

80; 60; 60 

Units distribution on 
defense points: 
61,5; 69,2; 69,2 

Defense optimal 
strategy (player D) 

Units distribution on 
defense points: 

50; 25; 25 

Units distribution on 
defense points: 

40; 30; 30 

Units distribution on 
defense points: 
30,8; 34,6; 34,6 

The value of a game 0,8 0,92 0,56; 0,44 
 

In the example considered, it is expedient for the offensive at the stage of preparation for combat 
to be guided by the criterion of breaking through at least one point of defense. 

Assuming that the defense points are homogeneous ( = 1 = 2 = … = n), we compare the val-
ues of the game by the criterion of breaking through the weakest point v1 and the criterion of breaking 
through at least one point v2. 
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It follows from the last expression that the criterion of breaking through at least one point be-
comes obvious choice for the offensive with an increase in the number of defense points n. 

2.6. Optimal distribution of forces and facilities between the first-phase and subsequent 
objectives 

The criterion of offensive in the «offensive – defense» model can be formulated as follows: max-
imizing the probability of breaking through defense points (the first-phase objective) and capturing 
a goal/object in the depths of the defense (destroying enemy reserves — the subsequent objective). 

If both sides, when solving the first-phase objective, are guided by the criterion of breaking 
through the weakest point of defense, then we have at the tactical level (m = 1) the following goal 
function of player O: 
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where  is the parameter of the combat superiority of the offensive in solving their subsequent objec-
tive. The first multiplier represents the solution of the first-phase objective, the second — the next one. 

It has been proved [Shumov, Korepanov, 2021] that it is expedient for the sides to use pure strat-
egies: 
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Informatively, the parameter D value is the proportion of troops assigned to the second echelon 
(reserve). This share essentially depends on the value of the parameter  and, to a lesser extent, on the 
value of the parameter B and the ratio of the resources of the parties. 

If all defense points are homogeneous ( = 1 = 2 = … = n), then the parameter D is equal to: 
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These dependencies for the distribution of combat units of the defending side by objectives 
(echelons) correspond to the views of US military experts in  the preparation and conduct of defensive 
operations. In particular, when the defenders are not conceding to the offensive in mobility then a hast-
ily taken up defense is organized with a significant part of the forces and facilities (up to two-thirds) in 
the second echelon (reserve) in order to defeat the wedged enemy during counterattacks. Positional 
defense is based on the firm holding for a certain time of defensive positions prepared in advance in 
engineering terms, the maximum use of fire weapons support, and the location of the main forces and 
facilities in the base area of defense formation. 

The sides may use not the criterion of the maximization (minimization) of the probability by 
solving the first and second tasks (2.30), but the criterion of achieving a guaranteed result: 
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(the offensive estimates the probability of breaking through the weakest point of defense and the prob-
ability of completing the subsequent task and take as a criterion the minimum value to be maximized). 
Accordingly, the goal of the defenders can be evaluated by criterion 1 – F(u, w). 
 

It has been proved [Shumov, Korepanov, 2021] that in an antagonistic game at the tactical level 
with the goal function (2.32), the optimal amount of forces and facilities allocated by the offensive to 
solve the subsequent objective is equal to: 
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u R

B
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. (2.33) 

The share of forces and facilities allocated by the offensive to solve the subsequent objective is 
determined by the value of the parameter B of the combat superiority of the offensive when breaking 
through defense points and the parameter  of the combat superiority of the offensive in the depth of 
the enemy’s defense (when repelling his counterattack). Accordingly, the optimal amount of forces 
and facilities allocated for solving the first-phase objective is Rx – u0. 

The optimal mixed strategy for the defenders is as follows. Defenders with probability 
B 



 

distribute all forces and facilities on the second line of defense, and with probability 
B

B  
 — on the 
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first line. In this case, the optimal value of the game is equal to: 
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With homogeneity of defense points ( = 1 = 2 = … = n), the value of the game is equal to 
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Let’s consider a meaningful interpretation of the problem. Speaking about the results of the War-
saw – Poznan operation of the troops of the 1st Belorussian Front, G. K. Zhukov noted that the enemy 
was able to determine the time and direction of the main attack, and there was no full guarantee of 
achieving operational-tactical surprise, so he, as a commander, assume for the worst case and also 
count for the worst. «What could the enemy do when he figured out our plan? He could leave in the 
first echelon of defense, that is, on his front line, reinforced cover, heavy machine guns, manual auto-
matic weapons, individual cannons, and even deploy tanks. Any reconnaissance that we would con-
duct, he would reject and thereby create the impression that he is sitting firmly here. In the depths of 
the defense, the enemy could place decoys, have standby equipment, maneuvering through the trench-
es he could create the impression that positions adjacent to the front edge to a depth of 2–3 km were 
living and not only living, but also shooting. But he could keep the main forces 5–6 km from the front 
line. Having finally lost 5–6 km of territory from our first strike and forcing us to shoot artillery sup-
plies, he would have succeeded in disrupting our operation» [Rech, 1985]. 

To achieve the success of operation, G. K. Zhukov proposed and implemented a plan for a false 
attack: «So, the strength of the artillery strike, the strength of the attack should not cause any suspicion 
in the enemy, and if it turns out that the enemy will be taken by surprise, falter and cannot withstand 
this strike, we will use this success, we will immediately go on the attack with all our forces and will 
carry out our general/main plan, that is, we will conduct a general attack/offense. Let's assume that the 
enemy still went for deception and cleared the territory for 3–5 km, gave our first echelon of attack an 
opportunity to approach the true front line, and then it would be stopped and the attack would have 
bogged down. In this case, a maximum of 1–1,5 hours after the transfer of the relevant commands and 
orders, we could proceed to the plan for the implementation of the artillery preparation of the general 
attack. Artillery from the main positions, without making any movements, because the artillery was 
placed so close to the front line (divisional artillery was located 700–1000 meters from the front line), 
could perform the tasks of artillery preparation» [Rech, 1985]. 

3.  Reflexion and information control in the «offensive – defense» model 

One of the fundamental properties of the decision-making process is the existence of the natural 
(«objective») reality, and its reflexion in the mind. At the same time, in many cases, there is an inevi-
table gap, a mismatch between the natural reality and its image in the mind. Purposeful study of this 
phenomenon is traditionally associated with the term «reflexion». 

As known, a fully informed game in normal form is defined by enumeration of the set of play-
ers, the sets of their admissible actions, and the set of their goal functions. However, the essential 
question is: does any of players know this description itself? For a long time in game theory, the «de-
fault» assumption was that the game is known to all its participants and, moreover, it is common 
knowledge among the participants. This technical term, the common knowledge, was introduced by 
the philosopher David Lewis [Lewis, 1969], and into game theory by Robert Aumann [Aumann, 1976] 
to denote a fact that all players know about, and all players know that it is known to all players, etc. 
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It is clear that the game  is not always a common knowledge. For modeling such situations, the 
concept of a reflexive game has been introduced (see [Novikov, Chkhartishvili, 2012]). In contrast to 
the game with common knowledge, the goal functions of the players in the reflexive game depend 
(aside from the set of actions of the players) on an uncertain parameter, also called the state of nature. 
Each of the players may have their own belief of what state of nature has been happening. Further, 
each player can have his own belief of opponents' beliefs, beliefs about beliefs, and so on. The com-
plex of all these representations forms the structure of awareness of the game. Thus, the description of 
a reflexive game differs from the description of a «regular» normal form game by the presence of the 
awareness structure (see [Novikov, Chkhartishvili, 2012; Fedyanin, 2020]). 

If one of sides has the opportunity to form one or another awareness structure, we are dealing 
with the task of information control (see [Novikov, Chkhartishvili, 2012]) — the purposeful formation 
of beliefs that are beneficial to the control subject. In this section, examples of reflexive games and 
information control problems in the offensive – defense model at the tactical level (m = 1) with vari-
ous uncertain parameters will be considered. 

3.1. Reflexion and information control in the problem of breaking through defense 
points (criterion — breaking through at least one point) 

Let’s consider an example of a reflexive game of breaking through defense points at the tactical 
level with the criterion of breaking through at least one point (section 2.4), in which the total amount 
of the offensive side's facilities is an uncertain parameter. Let the defense side — player D — believe 
that this parameter takes the value ρx, while the true value is rx, and all this is known to the offensive 
side — player O. Such an awareness structure can be represented as a graph with three nodes (see 
Fig. 5), where DO denotes player O from the point of view of player D, and the arrows indicate that 
the players are adequately informed about each other. The DO player is phantom, i. e. it exists only in 
the mind of player D and does not coincide with the real player O (player DO believe that the value of 
the uncertain parameter is ρx). 
 

 

Fig. 5. The Graph of a reflexive game with an informed offensive side 

Thus, subjectively, player D plays an antagonistic game with goal function  
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and own strategy y = (y1, …, yn). As shown in Section 2.4, the optimal strategy of player D in this 
game has the following form: 
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The player O uses the criterion specified by the goal function 
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Let’s find the optimal strategy of player O x = (x1, …, xn) for a fixed strategy (3.1) of player D. 
To do this, we use equations (2.18), which we will write in the following form: 
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from what, taking into account the same relations (3.3), it follows that 
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Substituting the value 0 ( )i xy   from (3.1) instead of yi in the last expression, we get the optimal 

strategy for O: 

 0

1

1

( ) ( )

n
y y

i x
i i x y i x y

r r
x r

n S r S r

 
      

     
,   i = 1, …, n. (3.4) 

Now let’s assume that player O has possibility to form any belief of player D about the value of 
an uncertain parameter within the set R. Then the answer to the question of what kind of belief it is 
beneficial for him to form will be the solution of the following optimization problem: 
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Considering (3.2), (3.1), and (3.4), this problem can be written as follows: 
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The solution of the problem (3.5) describes the following assertion. 

Statement 3.1. If the superiority parameters for each defend point are the same, i. e. condition 

 1 ... n   , (3.6) 

hold, then the function ν(ρx) is a constant. If condition (3.6) is not satisfied, the function ν(ρx) strictly 
decreases on the interval 0 < ρx < rx and strictly increases for ρx > rx. 

Proof. With the help of direct substitution, it is easy to verify that when condition (3.6) is satis-
fied, the function ν(ρx) is a constant, so below we will assume that this condition is not satisfied. 

Further, it is easy to see that the intervals of decrease and increase of the function ν(ρx) coincide 
with the intervals of decrease and increase, respectively, of the function 
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with the help of which we write the function (3.7) in the following form: 
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The function () is continuously differentiable on the set under consideration, therefore the in-
tervals of its monotonicity are determined by the sign of the derivative. Let's find the derivative: 
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It is easy to verify that 

 ( ) 0    при  = 0.  

To complete the proof, it suffices to show that the expression 
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takes negative values for – rx <  < 0 and positive values for > 0. 
Let’s use a well-known algebraic inequality (see, for example, [Radzivilovskii, 2006]): if the sets 

of numbers a1, a2, …, an and b1, b2, …, bn are ordered in the same way, then the inequality holds: 

 n (a1b1 + a2b2 + …+ anbn) ≥ (a1 + a2 + …+ an) (b1 + b2 + …+ bn), (3.9) 

if they are in reverse order, the inequality with the opposite sign is satisfied; moreover, if not all num-
bers a1, a2, …, an are equal to each other and simultaneously not all numbers b1, b2, …, bn are equal to 
each other, then the inequality is strict. 

Let’s introduce notations 
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Then the expression (3.8) can be written as follows: 

 Z = – n (a1b1 + a2b2 + …+ anbn) + (a1 + a2 + …+ an) (b1 + b2 + …+ bn).  

Let us order the quantities γi, i = 1, …, n. For  < 0 ai and bi are monotonically decreasing func-
tions of γi on the interval γi > rx, so not all ai are equal, not all bi are equal, ai and bi are equally or-
dered. Therefore, for  < 0, the inequality Z < 0 is true. 

Similarly, for  > 0 ai is a monotonically increasing function of γi, and bi is a monotonically de-
creasing function of γi, so not all ai are equal to each other, not all bi are equal to each other, ai and bi 
are inversely ordered. Therefore, for  > 0, the inequality Z > 0 is true. 

Corollary. Let the set R be a closed interval. Then the maximum of the function (3.5) is reached 
on one of the closed interval endpoints. 

Example 3.1. Let n = 3, rx = 200, ry = 100, 1 = 1, 2 = 3 = 0,05, R = [20, 2000]. Substituting rx 
and endpoints values of the closed interval R into the formula (3.5), we obtain: 

(200) 0,72, (20) 0,78, (2000) 0,83.      

When 1 = 1, 2 = 0,5, 3 = 0,2 we get: 

(200) 0,88, (20) 0,89, (2000) 0,89.      
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Thus, the optimal information control by the side of player O is , and it allows increasing the 
probability of breaking through defense points by 0,11. 

On fig. 6 a graph of the probability of breaking through points for values of ρx from 20 to 2000 
and for two defense conditions (vector values  = (1, 2, 3)) is shown. 
 

 
Fig. 6. The graph of the probability of breaking through defense points (vertical axis) depending on beliefs of the 
defender about the number of attackers (horizontal axis): v1 at 1 = 1, 2 = 3 = 0,05; v2 at 1 = 1, 
2 = 0,5, 3 = 0,2 

It can be seen from the figure that it is advisable to form false enemy (defender) beliefs about the 
number of our combat units when the possibilities for breaking through defense points (values of the 
vector ) are significantly different. 

3.2. Reflexion and information control in the problem of distributing forces and facilities 
between the first-phase and subsequent objectives 

Consider an example of a reflexive game of breaking through defense points at the tactical level 
in a problem in which the choice of players is the distribution of resources between two directions of 
their use — breaking through the defense and capturing an object in the depths of the defense (sec-
tion 2.5). The uncertain parameter is the total amount of facilities of the defending side. Let the offen-
sive side — player O — believes that this parameter takes the value ρy, while the true value is Ry, and 
the defense side — player D, knows about this. Such an awareness structure can be represented as 
a graph with three vertices (see Fig. 7), on which player D from the point of view of player O is denot-
ed by OD, and the arrows indicate adequate awareness of the players about each other. 
 

 
Fig. 7. Graph of a reflexive game with an informed defense side 

Thus, subjectively, player O plays an antagonistic game with goal function 
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and own strategy u. It is known (see Section 2.5) that the optimal strategy of player O in this game has 
the following form: 
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Player D, being informed about it, solves the problem of minimizing the goal function 
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by choosing its strategy w. It is easy to see that the optimal strategy of player O which minimizes the 
function (3.11) has the following form: 
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Now suppose that player D has possibility to form any belief of player O about the value of the 
uncertain parameter within the set R. Then the answer to the question of what value of belief it is bene-
ficial for D to form is the solution of the following optimization problem: 

0 0( ( ), ) min
yy R

F u w  . 

Based on relations (3.10)–(3.12), this problem can be written, after simple transformations, as follows: 
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The function minimized in (3.13) is rational function and allows one to study intervals of increase 
and decrease in the usual way (by comparing the sign of the derivative with zero). It is easy to verify 
the validity of the following statement. 

Statement 3.2. If the sum of the superiority parameters coincides with the combat superiority pa-
rameter of the offensive when he solves the subsequent objective, i.e. condition is met 

 B  , (3.14) 

then the function (3.13) is a constant. If condition (3.14) is not satisfied, the function (3.13) strictly 
increases on the interval 0 < ρy < Ry and strictly decreases for ρy > Ry. 

Corollary. Let the set R be a closed interval. Then one of the closed interval endpoints gives the 
minimum of the function (3.13). 

Example 3.2. Let n = 3, Rx = 400, Ry = 300, B = 10,  = 1, R = [30, 3000]. Substituting Ry and 
endpoints of closed interval R in expression (3.13), we get: 

 (300) 0,53, (30) 0,51, (3000) 0,40.       

Thus, the optimal informational control of player D is ρy = 3000, and it makes possible to reduce 
the probability of capturing an object by player O in the defense depth (the probability of solving the 
first-phase and subsequent objective) by 0,13. 

4. Conclusion and perspectives 

Thus, the game-theoretic models of «offensive – defense» were studied, in which the sides solve 
the first-phase and subsequent objectives, having the formation of troops in one or two echelons. 

The function of victory at an object (point, area, strip) used in the model has the property of self-
similarity and makes it possible to model the actions of troops at the tactical, operational, and strategic 
levels. 
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At the first stage of modeling, the solution of the first-phase objective is found — a breakthrough 
(holding) of defense points, at the second — the solution of the subsequent objective — the defeat of 
the enemy in the depths of the defense (counterattack and restoration of defense). 

It is assumed that the duration of the action cycles of the sides is approximately the same, which 
gives reason to use the Nash equilibrium (the sides make decisions simultaneously and independently). 
For each method of breaking through (holding) defense points we assign a goal function, and for the 
tactical level, solutions were found for the corresponding antagonistic games (Table 2). 

Table 2. Solutions to antagonistic games (breaking through defense points, tactical level) 

Offensive (O) Defense (D) 

Breakthrough the weakest 
point 

Breakthrough at least one 
point 

Average weighted 
probability 

Breakthrough the weak-
est point 

(11) 

O — mixed, D — pure 
(12) (13) 

Breakthrough at least 
one point (21) 

(22) 

O & D — pure 
(23) 

Average weighted prob-
ability (31) (32) 

(33) 

O & D — pure 

Abbreviations: mixed — mixed strategies, pure — pure strategies. 

 
It is shown that it is rational for the offensive side to use the criterion of «breakthrough at least 

one point», which, other things being equal, ensures the maximum probability of breaking through the 
defense points. 

A promising direction of the research is the solution of non-antagonistic games (problems 12, 13, 
21, 23, 31 and 32 in table 2), in which sides use different criteria of breaking through (holding) de-
fense points. 

The accepted assumption about the same duration of the cycles of actions of the sides (and using 
the Nash equilibrium), firstly, allows us to use found solutions to simulate counter fight that occurs 
during a march, offensive and defense, and secondly, excludes from the analysis, for example, well-
prepared defense, when it is rational to use a hierarchical game for its formalization (defender makes 
the first move). 

At the second stage of modeling for a particular case (the sides, when breaking through and hold-
ing defense points, are guided by the criterion of breaking through the weakest point, tactical level), 
the problem of distributing forces and facilities between tactical tasks (echelons) is solved: 

– the first criterion is a product of the probability of breaking through the defense line and the 
probability of defeating the enemy in the depth of the defense; antagonistic game, the sides use 
pure strategies. The share of troops allocated to solve the subsequent task, firstly, does not de-
pend much on the initial strengths of the sides and the values of superiority parameters at de-
fense points, and secondly, decreases with an increase in the value of the superiority parameter 
of the offensive in the depth of defense; 

– the second criterion (a guaranteed result) is the minimum value of the probability of breaking 
through the defense point and the probability of defeating the enemy in the depth of the defense; 
an antagonistic game, the offensive uses pure strategy, the defense — a mixed one, distributing 
all their facilities in the first line or the second (in the depth of defense). 
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A promising direction of research is the solution of game-theoretic problems of resource distribu-
tion between the first-phase and subsequent objectives with various methods of breaking through 
points and defeating in the depths of defense, and at all levels (tactical, operational and strategic). 

An important aspect of combat operations is awareness, including mutual awareness. Therefore, 
the side that can influence the opponent's beliefs can gain an advantage. In this paper, we consider two 
examples of reflexive games (games characterized by complex mutual awareness) and the implemen-
tation of informational control. It is shown under what conditions the informational control increases 
the player's payoff, and the optimal informational control is found. A promising direction for further 
research is the consideration of more complex structures of players' awareness and the corresponding 
tasks of informational control. 

We express our sincere gratitude to Dr. Phys.-Math. Sciences, Professor Alexander Alekseevich 
Vasin for meaningful conversations, advice and recommendations. 
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