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Crarbst OCBSIIEHA BBITYKJIO-BOTHYTHIM CEIJIOBBIM 3aj[a4aM, B KOTOPBIX [efieBast (GyHKIHUS SBISETCS CyM-
MO# OO0JBIIIOro YKcia cinaraeMbiX. Takue 3a7a4u NPUBICKAIOT 3HAYNTEIbHOE BHUMAHHE MAaTeMaTH4YeCKOro co00-
IIECTBA B CBSI3U C MHOYKECTBOM IPHJIOKEHUI B MallIMHHOM oOy4eHuH, BKiodas adversarial learning, adversarial
attacks u robust reinforcement learning, u 310 nuIE HEKOTOPBIC U3 HUX. OTHCIBHBIC PYHKIMUA B CYMME OOBIYHO
MPE/ICTABISIIOT COOO0M OIMMOKY, CBSI3aHHYIO C OOBEKTOM M3 BBIOOpKH. Kpome Toro, ¢popmynupoBka nomyckaer
(BO3MOXKHO, HETNIAJIKUiT) KOMIO3HUTHBINM uieH. Takue cliaraeMbie 4acTO OTPAXKAIOT PETYISPU3AIMI0 B 3ajadax
MalMHHOTro 00yueHwus. [Ipe/monaraercs, 4To pa3MepPHOCTh OJJHOM W3 TPYIIl MEPEeMEHHBIX OTHOCHUTEIBHO Mala
(OKOJIO COTHM WIJIM MEHBIIIE), a IPYTOif — BelnKa. Takoi ciydail BOSHUKAET, HAPpUMep, IIPH PaCCMOTPEHHUH JIBO-
CTBCHHOW (pOPMYJIMPOBKH 33aa4ll MUHUMH3AIUU C YMEPCHHBIM YHCIIOM OorpaHudcHuil. [IpemmaraeMbiii moaxos
OCHOBaH Ha WCIIOJBb30BAaHUM METOJa CEKyIIeH IUIOCKOCTH Baijpl Jisi MUHMMH3alUH OTHOCHUTEIBHO BHEIIHETO
0JT0Ka TIepEeMEHHBIX. DTOT aJITOPUTM ONTUMHU3AIUN 0COOCHHO () (DEKTUBEH, KOT/Ia pa3MEePHOCTh 3a1a9H He OYCHb
BennKka. HeTowHsIi opakyrn s MeTosa Baiias! BeIYHCIsIeTCS Yepes MpUOMIKeHHOE pellieHre BHY TPEHHEH 3a1adun
MaKCUMM3AIMH, KOTOpasi PelIaeTcs YCKOPEHHBIM afTOPUTMOM ¢ peaykimei qucnepeun Katyusha. Takum obpa-
30M, MBI UCIIOJIB3YEM CTPYKTYpY 3aladd Uil JOCTHKEHHsI OBICTPOH CXOIUMOCTH. B uccienoBaHuN MOTyuYeHBI
OTJICTIbHBIC OIICHKU CIIOKHOCTH JIUIS TPAJMECHTOB Pa3IMYHBIX KOMIIOHCHT OTHOCHTEIBHO PA3JIMYHBIX MEPEMCH-
HbIX. [Ipe/ioKeHHBI TIOAX0M HAKIIAAbIBACT CJIA0ble MPEIIONIOKCHUS O IeseBoi (yHKuuH. B yacTHOCTH, HE
TpeOyeTcsi HU CHJIBHOW BBIYKJIOCTH, HH TVIQJIKOCTH OTHOCHTEIILHO HU3KOPA3MEPHO TPyIIibl mepeMeHHbIX. Ko-
JMYECTBO IIAr0B MPE/UI0KEHHOTO AJITOPUTMA, & TAKIKE apUPMETHISCKast CJIOKHOCTh KaXKI0TO I1Iara siBHO 3aBUCST
OT Pa3MEpHOCTH BHEIIHEH MEepeMEHHOM, OTCIONA MPEATIONOKEHHEe, YTO OHa OTHOCUTEIIFHO Malla.

KiroueBsie coBa: ceayioBBIC 3a/1aud, METOABI MEPBOTO TOPSAKA, METOIBI CEKYIICH IIOCKOCTH,
PENYKIIUS JTUCIICPCHH

Pabora E.JI.Imaguna ¢unancupoBana Deutsche Forschungsgemeinschaft (DFG, Hemenxwuii mcciemoBarenbckuit (o)
B pamkax Excellence Strategy I'epmannn — BepnuHcknit Maremarnueckuil neeienosarenbekuit nentp MATH+ (EXC-2046/1,
project ID: 390685689). Pabora E.Boponnu BhImomHEHa MpU MOAAEpKKE MUHHCTEpCTBA HAyKH M BBICHIETO 00pa30BaHUA
Poccutiickoit ®enepanyn (roczamanne), Ne 075-00337-20-03, mpoext Ne 0714-2020-0005.

(© 2022 Erop Jleonunnosuy Imaun, Exarepuna Jmutpuesna Bopoauy

Crarbs nocrynsa no jmnensuu Creative Commons Attribution-NoDerivs 3.0 Unported License.
Yro0bI MOMYYHTH TEKCT JHUIECH3HUH, TOCETUTE BeO-caiT http:/creativecommons.org/licenses/by-nd/3.0/
i ornpassre nuckMo B Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.



COMPUTER RESEARCH AND MODELING
2022 VOL. 14 NO. 2 P. 257-275 KneM
DOI: 10.20537/2076-7633-2022-14-2-257-275

MATHEMATICAL MODELING AND NUMERICAL SIMULATION

UDC: 519.8

Variance reduction for minimax problems with a small
dimension of one of the variables

E.L. Gladin"**?, E.D. Borodich?*"

"Humboldt University of Berlin,
6 Unter den Linden, Berlin, 10117, Germany
2Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, 141701, Russia
3Institute for Information Transmission Problems RAS,
19/1 Bolshoy Karetny per., Moscow, 127051, Russia

E-mail:  egor.gladin@student.hu-berlin.de, ® borodich.ed@phystech.edu

Received 13.02.2022.
Accepted for publication 13.02.2022.

The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large
number of functions. Such problems attract considerable attention of the mathematical community due to
the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust
reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to
examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such
terms often reflect regularization in machine learning problems. We assume that the dimension of one of the
variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for
example, when one considers the dual formulation for a minimization problem with a moderate number of
constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect
to the outer block of variables. This optimization algorithm is especially effective when the dimension of the
problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of
the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus,
we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients
of different components with respect to different variables are obtained in the study. The proposed approach is
imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is
required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm
as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable,
hence the assumption that it is relatively small.
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Introduction

For several decades now, minimax problems of the form

minmax F(x, y), XCR™, Y CRM, (D
xeX yelY
have attracted a lot of attention of researchers from a variety of branches of mathematics and
other fields, including game theory, economics, statistics, imaging, etc. [Isaacs, 1999; Morgenstern,
Neumann, 1953; Taskar, Lacoste-Julien, Jordan, 2005; Haber, Modersitzki, 2004]. In recent years,
there has been a particularly large amount of research on this topic in the machine learning
community in connection with such topics as adversarial learning [Goodfellow et al., 2014], adversarial
attacks [Madry et al., 2017] and robust reinforcement learning [Pinto et al., 2017], to name a few.
Common assumptions about the problems are as follows: X, Y are nonempty closed convex
sets, and F(x, y) is a convex-concave function, that is, F(-, y) is convex for any y € Y, and F(x, -) is
concave for any x € X. This general formulation is well-studied. There exist algorithms that achieve
an g-solution in terms of the duality gap in O(1/¢) iterations [Nemirovski, 2004]. Such algorithms are
optimal in the sense that they match the lower complexity bound for smooth convex-concave saddle
point problems [Ouyang, Xu, 2021].
In many cases, exploiting the structure of the particular problem can lead to better results. Below
we describe three distinctive scenarios that often arise in applications. In the first of them, the objective
is a sum of a large number of components, i. e.,

1 m
Fx.y) =~ > Fi(x.y). @)
i=1

A lot of research has been conducted in this direction [Hien, Zhao, Haskell, 2017; Song, Wright,
Diakonikolas, 2021; Tominin et al., 2021; Palaniappan, Bach, 2016]. Increased interest in this setup is
often motivated by the fact that it is extremely common in machine learning, where F can correspond
to empirical risk, and F; may represent losses related to individual examples. Together with (or instead
of) the assumption (2), many articles consider the case where F' has a composite form:

F(x, y) = g(x) + f(x, y) = h(y),

where f is convex-concave; composite terms g and 4 are convex functions possessing some peculiar
properties, €. g. nonsmooth, prox-friendly, and so on. These composite terms often reflect regularization
in various machine learning models. The ability to access oracles of the terms separately leads to
improved convergence rates [Alkousa et al., 2020; Gasnikov et al., 2021]. The third important case
of the problem (1) is when the dimension of one of the variables (x or y) is relatively small (e. g.,
about a hundred or less), and the other is large. Consider, for example, the high-dimensional convex
minimization problem with a few dozens of functional constraints:

minh(y) s.t. () <0,i=1, ..., n,.
yeY
The Lagrange dual of this problem has the form

gﬂéﬂ max {F(x, y) == —xT€() - h)).

where £(y) is a vector with elements &,(y), i = 1, ..., n,. This dual problem falls exactly into the
described category. For deterministic low-dimensional minimization problems, cutting plane (or center
of gravity type) methods are arguably most efficient as they achieve a linear convergence rate while
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imposing very mild assumptions [Bubeck, 2015]. Prominent examples of such methods are the ellipsoid
method [Polyak, 1987] and Vaidya’s cutting plane method [Vaidya, 1989; Vaidya, 1996]. As it turns
out, these methods can be successfully paired with optimal first-order methods (e. g., [Gasnikov et al.,
2021; Gasnikov, Tyurin, 2019; Gasnikov, Nesterov, 2018]) and incorporated into schemes for solving
minimax problems where one of the dimensions is relatively small [Gladin et al., 2020; Gladin et
al., 2021]. This is possible due to the fact that ellipsoid and Vaidya’s methods are insensitive to the
noise in the subgradient. Thus, optimal first-order methods can be utilized for finding an approximate
solution of the inner maximization problem, which enables computation of a (noisy) subgradient of
a function G(x) := m%}( F(x, y). This approximate subgradient, in turn, is used by a cutting plane
€,

method for the outer ryninimization problem mi)r(l G(x). A similar approach was later used in [Usmanova
et al., 2021] for finding a projection onto co)rclevex smooth constraints via the dual formulation.

The present paper puts together the three cases described above. That is, we consider minimax
problems with the objective of finite-sum type and additional composite terms. Moreover, we assume
the dimensionality of one of the variables to be relatively small (up to a hundred). Below we introduce
the notation used throughout the article, and necessary definitions. After that, we give a formal
statement of the problem and a preview of the results.

Preliminaries

Solving optimization problems with finite-sum type objectives often involves randomized
algorithms. The resulting solution is therefore a random vector. In this sense, there are two common
ways to define approximate solution of a problem

f. = min f(x). 3)

xeX

Definition 1. Let £ > 0, o € (0, 1). A random vector x € X is called a (&, o)-solution of the
problem (3) if
P(f(z)_f* > 8) < 0.

If o = 0, then x is simply called an e-solution.

Definition 2. Let € > 0. A random vector x € X is said to be a stochastic &-solution of the
problem (3) if
Ef(x) - f. <e.

When describing the complexity of finding an (&, o)-solution or a stochastic e-solution, we will
use notation O(-) which means O(:) up to a small power of logarithmic in e ! and 0! factor. The next
definition introduces the notion of an inexact subgradient.

Definition 3. A vector v € R” is called a 6-subgradient of a convex function f at z € dom f
(denoted v € 4,f(2)) if
f) > f@+v(x-2)-6 VYxedomf.

If 6 = 0, this we get the usual definition of subgradient v € df(2).

We will denote the Euclidean norm by || - ||. Another useful object in our study is a proximal
operator.

Definition 4. Given a function ¢, a proximal operator is defined as a mapping

prox,,(x) := argmin {«//(u) + %Hu - x||2}. 4)

ueR”
The following property characterizes the smoothness of a function.
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Definition 5. The function f is called L-smooth, if for each x,, x, € R"

IVFCxy) = VEQ)Il < Lilxy = x,l. ®)

Formulation of the problem

In this paper we consider a problem of the form

. ~ 1 <
mip max | F(x. 3) = () + - Zl f(x, y) = h(y) (6)

under the following assumptions:

Condition 1.

1. X € R is a compact convex set with nonempty interior, dimension n, is relatively small (up to
a hundred).

2. F is convex and continuous in x.

3. [, are concave in y.

m
4. f(x,y) = % > fi(x, y) is u-strongly concave in y and satisfies for any x € X, y, y’ € R
i=1

DIV, ) = Vi YOIP < 2L (6 3) = f06 ) =V, 06 3D, y=Y)) ()

1
gr=

5. his convex.
REMARK 1. Condition (7) is satisfied, for example, if all of the functions f; are L f-smooth. Besides,

note that condition (7) implies that f is also L f—smooth in y. Indeed,

2

Hé Z (Vyﬁ(x’ y) = Vifilx, y/))

i=1

1 S N2
<~ Zl IV, fix, ¥) =V, fiCx, YOI

All that remains is to use Theorem 2.1.5 from [Nesterov, 2018].

We will also assume that at least one of the following two assumptions about the function %
holds true:

Condition 2.A. h is proximal-friendly, i. e., proximal operator (4) for h is easy to compute.
Condition 2.B. 5 is L,-smooth.

In each of these two setups, we propose an approach to solve the problem (6) and derive its
complexity, which is indicated in Table 1 along with the bounds from other studies on the subject.

2022, T. 14, N\e 2, C. 257-275
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Table 1. Comparison: number of gradient evaluations or proximal operator computations to find an e-saddle
point for the problem (6) with probability at least 1 — o or in expectation. It is assumed that Condition 1 holds,
g is u-strongly convex, g and & are proximal-friendly or smooth

g h Paper Complexity
- Ofm+ Vi voht O+ Vi
[Palaniappan, Bach, 2016; proxg: O{m + vim L" ol O\t Nmy,
> Alacaoglu, Malitsky, 2021] prox h: O(m + \/_7’) V. fi: O(m + W?)
= = —
5 prox g: O(m+m3/4wl7+ \/ﬁ%) V. [ 0(m+m3/4\/% + m%)
& [Tominin et al., 2021] — - - — - n
s proxh:O(m+m3/4wl7’+ MFI) vai:O(m+m3/4\17’+ m7’)
2 )
. Vgedg: O(n,) V.fi1 O(mn,)
E This paper prox h: 5(nx (m + mﬂi)) V[ 5(nx (m + mﬂi))
;E ~ L mL
é proxg:O(ﬂTf) V.fi 0( )
g [Tominin et al., 2021] T i,
Vi 0( . f) v, 0(%)
5 H
é Vgedg: O(n,) V.fi: O(mn,)
H This paper Vi 5(n i) v £ 5(11 /’”_Lh)
qq . x " yi* X I
Vgedg: O(n,) V.f.: O(mn,)
This paper Vh: 5(}1 (m+ L + m—L")) V.f: 5(n,(ln+ \/M))
x my H yli x z
— Lny mL
_ Vg: 0 Lt V.S 0( )
E [Tominin et al., 2021] = n,
3 prox h: 0(\1—’) V. fi: 0( )
q.:' H
é Vg: O(n,) V.f: O(mn,)
= This paper prox h: o n,(m+ %)) V. [ O(n (m+ /”_’Lf
Vg: 5(Lg+1;lf+Lh) v f 5(mL +I;[+L
[Nesterov, 2011] Vi 5(L$,+L/+Lh) V. 5(mL LT,
: " - ——
Ve 5 \/(Lg+Lf)(Lf+Lh) v f \/(L +Lf>(L +L,)
. . H
[Lin, Jin, Jordan, 2020] o 5( Nommn v/ 0( N
= ] K
(=4
2 Vg 0(\/%) V.S 0(,717f)
? [Alkousa et al., 2020] e —7 L\
= vh: 0% %) V),fl.:O(m(—’) )
2 — T LT T L+,
g ve: O] V. 0(2)
E [Palaniappan, Bach, 2016; § O(L L" - it O I L" I
5 Alacaoglu, Malitsky, 2021] Vh: 5( “’+M’+ ”) V. fi: ( e )
= LgL/ mL
Vg: O m \E o=t
[Tominin et al., 2021] —m
T Eay ol
Vg: O(n,) V.f.: O(mn,)
This paper Vh-5(n \/5) Vf-5(n ‘/ﬂ)
) u i YN n
Vg: o(n V. f.: O(mn,)
This paper Vh: 5( (m + \[ ‘[ 2y )) V. Ji 5(nx (m + \/m(LL—%h)))
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Outline of the Approach

Problem (6) can be thought of as a composition of the inner maximization problem

G(x) := max F(x, y), )
yERnV
and the outer minimization problem
min G(x). )
xeX

The outer problem can be solved by some iterative method which utilizes objective’s gradients (or
subgradients) at its steps. These gradients can be computed inexactly based on the approximate solution
of the inner problem. We will use a particular type of inexact subgradient called §-subgradient, see
Definition 3. As a ¢-subgradient of g at x € O, we can take the subgradient V F(x, y) € 0, .F(x, y),
where y is a g-solution of the inner problem (8) for the current x. The required accuracy ¢ is given by
the following lemma.

Lemma 1 (see [Polyak, 1987]). In the assumptions of problem (6), if y € R satisfies G(x) —
- F(x,y) < 6 for some 6 > 0, then 8,F(x,y) C d,G(x).

Thus, we need to solve the inner problem (8) with accuracy ¢ to obtain the d-subgradient.

The general algorithm for solving the problem (6) is given below, and the subsequent sections
showcase particular methods that can be used with this algorithm along with the respective complexity
bounds.

Algorithm 1. General algorithm for the problem (6)

Require: Method M, solving (9) using d-subgradients, its number of steps N > 0, method M,
solving (8), its expected accuracy &, initial point (x?, y°)
I: fork=0,...,N—1do
2. Solve (8) for a fixed x = x* by M, with expected accuracy ¢ starting from YK

yk+1 = Mz(-xk9 yk9 E)
30 Put VM=V S, YK € 9 S (o, YR
4. Make one step of M, from x using approximate subgradient v*!:

= stepM,, A, VA

5. end for

Ensure: xV.

The complexity of Algorithm 1 is given by the following proposition.

Proposal 1. Let ¢ > 0, o € (0, 1). If the method M, for solving (9) finds an e-solution
in N,(&, 0) computations of S-subgradients', and the method M, for solving (8) finds e-stochastic

solution in N{ (m, €) computations of V,f; and Né’(é) computations of Vh or prox,, then for

h

"' To assure accuracy & in a finite number of steps, a method M, may require 6 to be sufficiently small relative to &
(e.g., 6 < €). The proposition assumes this requirement to be fulfilled.

2022, T. 14, N\e 2, C. 257-275
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a given § > 0, Algorithm 1 with € : achieves the (e, o)-solution of the problem (6) after

— _ oo
T N@Eo
N, (g, 6) computations of Vg € 0g,
m - N, (&, 6) computations of V f; € 0, f,,
N, (e, 9) - Ng(m, &) computations of V f;,
N, (e, 9)- Ng(é) computations of Vh or prox,, .

The methods used

Vaidya’s cutting plane method

Vaidya proposed a cutting plane method from [Vaidya, 1989; Vaidya, 1996] for solving problems
of the form
min G(x), (10)
xeX

where X C R" is a compact convex set with non-empty interior, and G: X — R is a continuous convex
function.

We will now introduce the notation and describe the algorithm. Let P(A, b) denote a bounded
full-dimensional polytope of the form

P(A, b) = {x € R": Ax > b} where A ¢ R"™" and b € R".

The logarithmic barrier for P is defined as
L(x; A, b) := — Z In (aiTx - bi),
i=1

where a] is the i row of A. The Hessian of L(x) is given by

1 a.a’

H(x; A, b) = Z — (11)

i=1 (al.Tx - bl.)2

and is positive definite for all x in int P (interior of P). The volumetric barrier for P(A, b) is defined
as

1
V(x; A, b) = 3 In (det H(x; A, b)),
where det H(x; A, b) denotes the determinant of H(x; A, b). Let also o;(x; A, b) denote the values
al (H(x; A, b)) 'a,

,'( s A, b) =
e (al.Tx - bl.)2

, l<i<m. (12)

The volumetric center of P is defined as the point x, that minimizes V(x; A, b) over int P:

x,:= argmin V(x; A, b). 13)
xeint P(A, b)

The volumetric barrier V is a self-concordant function and can therefore be efficiently minimized
with the Newton-type methods. For more details and theoretical analysis, refer to [Vaidya, 1996; Vaidya,
1989]. It has been proved that one can use a d-subgradient instead of the exact subgradient in Vaidya’s
method [Gladin et al., 2021]. Below is the version of the algorithm using d-subgradients (Algorithm 2).
The method produces a sequence of pairs (4,, b,) € R" xR"™, such that the corresponding polytopes
contain a solution of the problem (10). A simplex containing the set X is often taken as the initial
polytope (A, by).
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Penyxmus qucnepcun uist MUHUMAKCHBIX 3a/1ad C HEOOBIIION . . . 265

Algorithm 2. Vaidya’s method using d-subgradients for the problem (10)

Require: Number of steps N > 0, § > 0, pair (A, b,) € R"0™" x R™o, defining the initial polytope,
algorithm parameters 7 < 1074, ¥ < 1073 - .
I: fork=0,...,N—1do
2:  Find an approximate volumetric center, see (13).
3 Compute H; ! := (H(x,; A, bk))_l and {o(x,: A, bk)}:ikl, see (11) and (12),
4 i = argmino(x; Ay, by)

1<i<mk
5. if O'ik(xk; A, bk) < 7y then
6: Obtain (Ak+1, bk+1) by removing the ikth row from (Ak, bk),
7: m = mk—l.
8:  else
9: ¢, € —05G(x,),
10: Find 8, € R such that ¢/ x, > 8, from the equation

T -1
o H ¢ 1

(cfx, —B)?

A b
11: A= (cf)’ b, = (ﬂ’;), m, =m +1.

12: end if
13: end for

Ensure: x, = argmin G(x).
xe{xo’""fol}

Theorem 1 ([Gladin et al., 2021]). Let B, and B be some Euclidean balls of radii p and R,
respectively, such that Bp C X C By, and let a number B > 0 be such that |G(x) — G(xX) < B

Vx, x’ € X. After N > 27"ln(%) + %1117‘[‘ iterations Vaidya's method with §-subgradient for the

problem (10) returns a point x" such that

Bn! R Inw—yN
G(") - min G(x) < — exp(n” 4 )+5,
xeX Yp

14
7 (14)
where y > 0 is the parameter of the algorithm.

L-Katyusha

In this section we consider the accelerated variance reduction algorithm L-Katyusha
from [Hanzely, Kovalev, Richtarik, 2020]. This method solves the problem

. 1 <
Q%E{F(x) = ;fi(x) +h(x)}, (15)
p
Sx)

where f(x) is L f-smooth and u-strongly convex, h(x) is convex and proximal-friendly. At iteration k
of L-Katyusha, a set § C {1, 2, ..., m} of indices is sampled from the distribution defined by p, :=
:=P@{EeS),i=1,..., m The method uses the following unbiased gradient estimate:

1 1
== —(VOH) = VW) + V).
M Pi
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The pseudocode of L-Katyusha is presented as Algorithm 3. We formulate the following assumption
to present the convergence theorem for Algorithm 3.

Condition 3. There exists L > 0 such that for all k we have
E [l - VAGHIP| < 2LD,(w, 2,

where D f(x, X) = f(x) — f(X') = VF(X') (x — xX') is Bregman divergence.

Algorithm 3. L-Katyusha
Input: starting point x° € R, number of iterations K, parameters 0 < 0,0, <1L,npvy>0,

probability p, f(x) = £ 5 £(x), h(x)
i=1

]

Initialization: y° = 20 = % = x°

I: fork=0,1,2,..., K—1do

2 =0 +owt +(1-0, -0,
3:  Sample random § C {1, 2, ..., m}
4

=Yk + L3 LV - VW),
ieS !

5. YAl = proxnh(xk —1jg%)
6: 2= (1 =g+ IO - i

k .
el {w , with prob. 1 — p,

7. Wit = 0.
vy, with prob. p
8: end for

Theorem 2 (Corollary 5.3 from [Hanzely, Kovalev, Richtarik, 2020]). The iteration
complexity of Algorithm 3 to find a stochastic e-solution of the problem (15), while Assumption 3

holds, can be bounded by
1 L 1
— 4oL+ L liogt] (16)
p Ju pu| e

In our study, we fix |S| =1 and p = % To link Assumption 3 with our setup, we will use the
following observation.

N:=0

Proposal 2. It holds that

m

1 1
E|Ig" - VACHIP] < = > —IVAE) = VAWHIP.
m mp.

i=1 i

Let us set p, := %, then Proposal 2 together with the property (7) implies condition 3. That
brings us to the following complexity estimate which we give in the form of a corollary.

Corollar 1. Let f be u-strongly convex and satisfy (7), then a stochastic e-solution of the
problem (15) can be achieved after the expected number of computations of V f.(-) and prox,,

mLf 1
N =0{|m+ q|—|log—¢.
7 €
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Special case of L-Katyusha

Consider again the problem (15) preserving the same assumptions about f but with 4 now being
L, -smooth (and possibly not prox-friendly). It appears that L-Katyusha can be efficiently used to solve
this problem if we treat it as a finite sum minimization with m + 1 terms and choose hyperparameters
in an appropriate way. We present this special case of L-Katyusha in the form of Algorithm 4.

Algorithm 4. Special case of L-Katyusha

Input: starting point x° € R?, number of iterations K, parameters 0 < 0,60, <1, npBv>0,
probabilities p, p
Initialization: 0 = 70 = w0 = x°
1. fork=0,1,2,..., K-1do
2 X =0+ o+ (1-0, -0,
3 Generate £ = { 1, W%th probab?thy 1-p,
0, with probability p
4. if €F =0 then
5: gt = L (VA(&) = Vhoh)) + V F0K) + Vh(wh)
6: else
7 Sample random i € {1, 2, ..., m}
8 gt = 15 (VAR = VWD) + VW) + Vhowh),
9: end if
10 Y= k- ppgk
1 2 =g (1=t + TOM -
ek = {wk, with prob. 1 —p,
yk, with prob. p
13: end for

Based on Theorem 2, we prove the following complexity bound for Algorithm 4.

Theorem 3.  Algorithm 4 finds an e-stochastic solution of the problem (15) with L,-smooth
composite term h after the total expected number of computations of V f,(-) bounded by

L. +L
(1—p+mp)[l+ L £]1ogl],
p u \Nou) =&

and the total expected number of computations of Vh(-) bounded by

L,+L
(p +p)[l+ f—h+ £]10g1}
e\ Vpu &

Solving Saddle-Point Problems

)

)

L. L
— f i
where L = max{l_p, > }

This section presents algorithms for solving the minimax problem (6) assuming that one of
Conditions 2.A, 2.B holds. As was pointed out in the section “Outline of the Approach”, we view
this problem as a composition of inner maximization and outer minimization problems, (8) and (9),
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respectively. We apply Algorithm 1 with Vaidya’s cutting plane method (Algorithm 2) as the
method M. We will use Theorem 1 and put 6 = £, obtaining

£ n
N, (s, 5): O(nxlog ;) 17
steps of Vaidya’s method. The full gradient in x is calculated at each step, resulting in
nx
(0] (mnx log ;) (18)

evaluations of d, f;, while the number of computations of Vg € dg is given by (17).

REMARK 2. As far as the arithmetic complexity of an iteration is concerned, Vaidya’s cutting plane
method involves inversions of n, X n, matrices, hence the assumption that n, is relatively small.

Further, for each of Conditions 2.A, 2.B we solve the inner problem in a specific way described
in what follows.

Proximal point algorithm

If the function h(y) is proximal friendly, we propose to use L-Katyusha (Algorithm 3) as the
method M,. According to Theorem 2, the number of oracle calls performed by L-Katyusha to ensure

expected accuracy € equals
mL 1
+ lo g (19)
,u

Now, estimates (18) and (19) together with Proposal 1 result in the following complexity bounds.

Nz(m9 E) = O

Theorem 4. Assume that Conditions 1 and 2.A hold for the problem (6), and let € > 0,
o € (0, 1). Algorithm 1 with 6 := &/2, M, := Algorithm 2, M, := Algorithm 3 arrives at (&, 0)-solu-
tion of the problem (6) after

5(nx) computations of Vg € 0g,
5(mnx) computations of V. f; € 0..f;,
mL

m+ —f]] computations of V. f;, prox,,
u

Smooth Algorithm

If the function A(y) is L,-smooth, we propose to use the special case of L-Katyusha (Algorithm 4)
as the method M,. According to Theorem 3, Algorithm 4 can ensure the expected accuracy & after

1 L, +L 1
o (l—p+mp)[—+ \/ Ly £ log:]
p H VP.U €

computations of V, f,(-) (in average) and

o 5 B

computations of VA(-) (in average), where £ = max {1 fp 7 } Choose p = L and get L = L +L,.
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e [f we choose p = p, we get

1 L, +L 1
(1-p+mp)|—+ LA £ log=|=
p H PH €

o

1 L. +L L, +L 1
:O mpo| — Jf h+Jf h 10g::
p H PH €
L,+L o(L.+L) 1
=O0||m+mp L m L— log=|=
H H €
/L 1 L 1
=0||lm+m —h]log: =0|m —hlog:]
u P> u £
computations of V| fi(-) (in average) and
1 L, +L 1
0(p+p)—+\, Ly £log,—dz
p M PH €
L.+L 1 L 1
=0|p U %log: =0|+[ZLlog=
N« po e TR

computations of VA(-) (in average).

e [f we choose p = %, we get

1 [L+L 1 [m(L, +Ly,) 1
Ooll-p+mp)|—+ LA £ log=|=0|[m+ S — log =
p H PH € H €
computations of V, f,(-) (in average) and
1 L,+L 1
Ol(p+p)|—+ \/u+ £ log=|=
p H PH €
L L.+L mL 1 L mL 1
=0||m+ \/—h+ \{ L hy \/ "llog=|=0||m+ \{—f+ w{—h log =
H my H € my H €

computations of VA(-) (in average).

Theorem 5. Assume that Conditions 1 and 2.B hold for the problem (6), and let € > 0,
o € (0, 1). Algorithm 1 with ¢ := &/2, M, := Algorithm 2, M, .= Algorithm 4 arrives at (g, 0)-solu-
tion of the problem (6) after

5(nx) computations of Vg € 0g,
5(mnx) computations of V. f; € 0. f;,

and the number of computations of V. f,, Vh which depends on the choice of p in Algorithm 4:
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. L
e fp=p= Lfth, then
computations of V. f,,
computations of Vh;

e ifp= %, then

computations of V. f,,

L f mL,
m+ A|— + 1|— || computations of Vh.
my Ju

Conclusion
The present work provides a framework for solving convex-concave minimax problems of the
form

min max
xeX yeR"Y

1 m
F(x,y)=gx) +— Z filx, y) = h(y)}, (20)
m i=1

where X C R’ is a compact convex set with nonempty interior, and the dimension 7, is relatively
small (up to a hundred). The problem is treated as a composition of outer minimization and inner
maximization problems. The proposed framework comes in the form of Algorithm 1 which can be
used with various optimization methods M, and M, for solving outer and inner problems, respectively.
The main requirement for the method M, is to tolerate inaccuracy in the (sub)gradient. Cutting plane
methods (e. g., the ellipsoid method and Vaidya’s method [Vaidya, 1989; Vaidya, 1996]) are well
suited for this role for two reasons. First, they provide linear convergence while working in very mild
assumptions about the objective function. Second, some of these algorithms can be used with an inexact
subgradient without accumulating the error, as proved in [Gladin et al., 2020] for the ellipsoid method
and in [Gladin et al., 2021] for Vaidya’s cutting plane method. The main drawback of these algorithms,
however, is the dependence of the convergence rate on the dimension of the problem. Moreover, the
arithmetic complexity of each step also grows fast with the dimension. Thus, we recommend applying
them in the case where n, is relatively small.

Together with the framework for solving the problems of the form (20), we provide two examples
of its use. In both of them, Vaidya’s cutting plane method and L-Katyusha [Hanzely, Kovalev, Richtarik,
2020] are chosen as the methods M, and M,, respectively. The first example considers the case of
prox-friendly composite term A(y), and in the second one it is assumed to be L, -smooth. In each of
these two scenarios, L-Katyusha has to be used in a special manner, which results in two sets of
upper complexity bounds for the problem (20). These bounds are given in Theorems 4, 5 and Table 1.
Compared to the known methods for this type of problems, the proposed approach has a number of
advantages. First, strong convexity with respect to the x variables is not required. Second, we do not
assume the objective to be smooth in that variable group. Third, the complexity is proportional only
to the square root of the conditional number, while most of other studies have a heavier dependence
on this value. Our approach, however, has some limitations, and one of them is the inability to take
advantage of the case where g(x) is proximal-friendly. Another restriction is related to a relatively small
dimensionality of x caused by the fact that the number of iterations is proportional to 7.
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The aforementioned results have a theoretical importance on their own. However, the authors are
in the process of conducting numerical experiments that will illustrate the performance of the proposed
approach in practice. Another prospective task is to obtain lower complexity bounds for the considered
type of minimax problems. Such bounds are already known for large-scale smooth strongly convex-
strongly concave saddle point problems with objectives of sum type [Xie et al., 2020]. In our study,
however, the dimension of one of the variables is assumed to be relatively small, which enables the
use of cutting plane methods leading to a more favorable dependence on the conditional number of the
problem.

References

Alacaoglu A., Malitsky Y. Stochastic Variance Reduction for Variational Inequality Methods //
arxiv.org. — 2021. — URL: https://arxiv.org/abs/2102.08352 (date of access: 12.02.2022).

Alkousa M. S., Gasnikov A. V., Dvinskikh D. M., Kovalev D. A., Stonyakin F.S. Accelerated methods
for saddle-point problem // Computational Mathematics and Mathematical Physics. — 2020. —
Vol. 60, No. 11 — P. 1787-1809.

Bubeck S. Convex optimization: Algorithms and complexity / Found. Trends Mach. Learn. — 2015. —
Vol. 8, No. 3-4 — P. 231-357.

Gasnikov A. V., Nesterov Yu. E. Universal method for stochastic composite optimization problems //
Computational Mathematics and Mathematical Physics. — 2018. — Vol. 58, No. 1 — P. 48-64.
Gasnikov A.V., Dvinskikh D.M., Dvurechensky P E., Kamzolov D.I, Matyukhin V.V,
Pasechnyuk D. A., Tupitsa N.K., Chernov A.V. Accelerated meta-algorithm for convex
optimization problems // Computational Mathematics and Mathematical Physics. — 2021. —

Vol. 61, No. 1 — P. 17-28.

Gasnikov A. V., Tyurin A. 1. Fast gradient descent for convex minimization problems with an oracle
producing a (6, L)-model of function at the requested point / Computational Mathematics and
Mathematical Physics. — 2019. — Vol. 59, No. 7 — P. 1085-1097.

Gladin E., Kuruzov 1., Stonyakin F., Pasechnyuk D., Alkousa M., Gasnikov A. Solving strongly convex-
concave composite saddle point problems with a small dimension of one of the variables //
arxiv.org. — 2020. — URL: https://arxiv.org/abs/2010.02280 (date of access: 12.02.2022).

Gladin E., Sadiev A., Gasnikov A. V., Dvurechensky P. E., Beznosikov A., Alkousa M. Solving smooth
min-min and min-max problems by mixed oracle algorithms // Mathematical Optimization Theory
and Operations Research: Recent Trends. 20th International Conference / eds. by A. Strekalovsky,
Y. Kochetov, T. Gruzdeva, and A. Orlov. — Springer, 2021. — P. 19-40.

Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y.
Generative adversarial nets // Advances in Neural Information Processing Systems 27. Proceedings
of the 2014 Conference / eds. by Z.Ghahramani, M. Welling, C.Cortes, N.D. Lawrence, and
K. Q. Weinberger. — The MIT Press, 2014. — Vol. 27.

Haber E., Modersitzki J. Numerical methods for volume preserving image registration // Inverse
problems. — 2004. — Vol. 20, No. 5 — P. 1621.

Hanzely F., Kovalev D., Richtarik P. Variance reduced coordinate descent with acceleration: New
method with a surprising application to finite-sum problems // Proceedings of the 37th
International Conference on Machine Learning / eds. by H. Daumé III and A.Singh. — PMLR,
2020. — P. 4039-4048.

Hien L. T K., Zhao R., Haskell W. B. An inexact primal-dual smoothing framework for large-scale non-
bilinear saddle point problems // arxiv.org. — 2017. — URL: https://arxiv.org/abs/1711.03669 (date
of access: 12.02.2022).

2022, T. 14, N\e 2, C. 257-275




272 E.JI. Tnanun, E. JI. bopoauu

Isaacs R. Differential games: a mathematical theory with applications to warfare and pursuit, control
and optimization. — Courier Corporation, 1999. — 384 p.

Lin T, Jin C., Jordan M. I. Near-optimal algorithms for minimax optimization // Proceedings of 33rd
Conference on Learning Theory / eds. by J. Abernethy and S. Agarwal. — PMLR, 2020. — P. 2738~
2779.

Madry A., Makelov A., Schmidt L., Tsipras D., Vladu A. Towards deep learning models resistant to
adversarial attacks // arxiv.org. — 2017. — URL: https://arxiv.org/abs/1706.06083 (date of access:
12.02.2022).

Morgenstern O., Neumann J. V. Theory of games and economic behavior. — Princeton: Princeton
university press, 1953. — 704 p.

Nemirovski A. Prox-method with rate of convergence o(1/¢) for variational inequalities with lipschitz
continuous monotone operators and smooth convex-concave saddle point problems // SIAM
Journal on Optimization. — 2004. — Vol. 15, No. 1 — P. 229-251.

Nesterov Yu. E. Solving strongly monotone variational and quasi-variational inequalities // Discrete &
Continuous Dynamical Systems. — 2011. — Vol. 31, No. 4 — P. 1383.

Nesterov Yu. E. Lectures on convex optimization. — Berlin: Springer International Publishing, 2018. —
612 p.

Ouyang Y., Xu Y. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-
point problems // Mathematical Programming. — 2021. — Vol. 185, No. 1 — P. 1-35.

Palaniappan B., Bach F. Stochastic variance reduction methods for saddle-point problems // Advances
in Neural Information Processing Systems 29. Annual Conference on Neural Information
Processing Systems 2016 / eds. by D.D.Lee, U. von Luxburg, R.Garnett, M. Sugiyama, and
I. Guyon. — The Curran Associates Inc., 2016. — P. 1416-1424.

Pinto L., Davidson J., Sukthankar R., Gupta A. Robust adversarial reinforcement learning / ICML’17:
Proceedings of the 34th International Conference on Machine Learning / eds. by D.Precup and
Y. W. Teh. — JMLR.org, 2017. — P. 2817-2826.

Polyak B. T. Introduction to optimization. — New York: Publications Division, Inc., 1987. — 464 p.

Song C., Wright S.J., Diakonikolas J. Variance reduction via primal-dual accelerated dual averaging
for nonsmooth convex finite-sums // arxiv.org. — 2021. — URL: https://arxiv.org/abs/2102.13643
(date of access: 12.02.2022).

Taskar B., Lacoste-Julien S., Jordan M. Structured prediction via the extragradient method // Advances
in Neural Information Processing Systems 18. Proceedings of the 2005 Conference / eds. by
Y. Weiss, B. Scholkopf, and J. Platt. — The MIT Press, 2006. — P. 1345-1352.

Tominin V., Tominin Y., Borodich E., Kovalev D., Gasnikov A., Dvurechensky P. On accelerated
methods for saddle-point problems with composite structure // arxiv.org. — 2021. — URL:
https://arxiv.org/abs/2103.09344 (date of access: 12.02.2022).

Usmanova 1., Kamgarpour M., Krause A., Levy K. Fast projection onto convex smooth constraints //
Proceedings of the 38th International Conference on Machine Learning. Proceedings of the 2021
Conference / eds. by M. Meila and T. Zhang. — PMLR, 2021. — Vol. 139.

Vaidya P.M. A new algorithm for minimizing convex functions over convex sets // 30th Annual
Symposium on Foundations of Computer Science. — 1989. — P. 338-343.

Vaidya P.M. A new algorithm for minimizing convex functions over convex sets / Mathematical
programming. — 1996. — Vol. 73, No. 3 — P. 291-341.

Xie G., Luo L., Lian Y., Zhang Z. Lower complexity bounds for finite-sum convex-concave minimax
optimization problems // Proceedings of the 37th International Conference on Machine Learning.
Proceedings of the 2020 Conference / eds. by H.Daumé III and A.Singh. — PMLR, 2020. —
Vol. 119.

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE




Penyxmus qucnepcun uist MUHUMAKCHBIX 3a/1ad C HEOOBIIION . . . 273

Proofs

Proof of Proposal 1

Suppose that at each iteration of Algorithm 1, the probability to solve the inner problem (8)

with accuracy worse than 6 does not exceed o (8 AT Then the probability to solve the inner problem

with accuracy worse than § at any of the N (8 o) iterations does not exceed o. Let us calculate the

complexity of finding the (5, solution of the inner problem by the method M, . For a random

N, (e, 6))
variable X, Markov’s 1nequa11ty yields

EX
P(X >9) < 5

Let X be the accuracy of the output of M,, which is a random variable. The desired expected accuracy &
provided by the method M, is then defined by

EX B o oo o~

= — EX = =
5§ N0 N, (&, 6)

Thus, the specified choice of € ensures that with probability 1—o the inner problem will be solved with
accuracy ¢ at all the iterations of the outer loop, which means the availability of d-subgradients of g
for the method M, see Lemma 1. We finish the proof by observing that computation of V,F € 4, F
involves m computations of V,f. € d,f, and that the method M, is executed at each iteration of
Algorithm 1, hence the multiplication of its complexity by N, (g, 6) in the final estimates.

Proof of Proposal 2

2

E[Ig" - V/(HIP| = Z p; H%i (VAGH) = VAWD) = (V65 - 7o)

m

Z pl\ZCORAEC o —22 (VA = VAW, TN = Vb)) +

=1
+ 3 IV = Vb
i=1
The last two terms equal

~2(VS(H) = V), VI8 = V1) + V105 - Vb = - [vr6d) - v row

and the statement follows.
Proof of Corollary 1

Since f satisfies (7), it is also L -smooth, see Remark 1. At each iteration of L-Katyusha, the

expected number of computations of \Y f ()is 1 —p+pm+1) =1+ pm. Choose |S| =1, p, = l

and p = ... The statement follows from Theorem 2 and Proposition 2.
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Proof of Theorem 3

e First, we reduce the problem to a finite sum minimization with m + 1 terms:

1 m+1 m+ 1 1 &~
I = -_— . = -_— .
() m-%lz‘li=1 m f‘(x)+m+1 YV Zi:l Ji),

where |
m+ .
fi(x)={ P r, =1 ..., m, o
(m+ Dh(x), i=m+1.

Now we can apply L-Katyusha (Algorithm 3) to this problem. If |S| = 1, then the gradient
estimate writes as !
—k
=—|(V -V VF
& = Grr g, (VD = VEWH) + VFOH)

Letp, ., :=p€(0,1) andp p,i:1,...,m,then(21)ylelds

Tp (VA = VAWD) + VFWh, i=1,....m,
1
= (VA(x*) = VAGWH)) + VFWH), i=m+1,
p

which is reflected in our special case of Katyusha (Algorithm 4).

e Next, let us define the constant £ for Algorithm 4. Due to Proposal 2,

m+1

B[Igt - VEYIP] < +1Z< +11> VTG0 — VTG

Using the definitions of p, and f, we get

&1 1
E[Ig* - VFCOIP| < VA -V FOh| + > [VAGH) = VRoH|

i=1

Now, property (7) and L,-smoothness of & imply (see also Theorem 2.1.5 from [Nesterov, 2018])

2L 2L
E[Ig" - VFGHIP| < —L =P FUSESR: hDh(wk, ).

L
Choose £ = max {ITf 7’1} then

E[Ig" - VFOMIP| < 2LD (0w, 5.
Assumption 3 holds.

e The expected number of computations of Vf.(-) per iteration of Algorithm 4 is 0, if fk =0,
whHl = Wk 1 iF &F = 1, Wi = who m+ 1, 1f§k— 1, Wl = 4% and m, if & = 0, w&*! = y*. Then
the total expected computation of V S 1s
log ]

L+L
o1 =p)1 =p)+(m+ 1)1 - p)p+mpp) -
pit
/L +L {
=O(1—P+mp)[l+ Ly £
P H PHU
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e The expected number of computations of VA(-) in Algorithm 4 is the sum of complexity coming
from the full gradient computation (if the statement includes w**! = yX) and the rest (if the
statement includes &¥). The former requires a computation of VA(-), if w¥*! = y*, the latter if &
is equal to 0. The total expected number of computations of VA(-) is O(p + p) per iteration. Thus,
the total expected number of computations of VA(-) is bounded by

fL +L /
(p +,o)[l + Ly £]log l]
p H PH €

()
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