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Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного
мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не иска-
жался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно
решать самыми различными способами, однако одним из самых простых решений, которое ши-
роко используется в индустрии, является добавление нелинейных искажений, позволяющих ли-
неаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра,
не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени
модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое ко-
личество адаптируемых параметров. В данной статье производится анализ современных работ
по теме многокритериальной оптимизации и построения моделей для решения задачи предиска-
жения сигнала при помощи данных методов. В статье показывается, что возможно найти струк-
туру (сохранив производительность) и имеющую меньшее количество используемых ресурсов,
быстрее, чем полный перебор по всему словарю из заданных параметров.

Ключевые слова: цифровое предискажение сигнала, многокритериальная оптимизация, по-
строение модели, усилитель мощности
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Introduction

At the moment, there are a lot of base stations which are very important for realizing a good
wireless connection. For the time being, there is a need to generate additional high-speed signals that
will allow us to download large amounts of data quickly. As a result, modern signals should have
extremely complex modulation and a wide frequency bandwidth (for example, the third generation
partnership project (3GPP) established frequency limits in the 5G new radio (NR) standard, namely,
frequency range 1 (FR1: 0.4–7.1 GHz range) and frequency range 2 (FR2: 24–52.6 GHz range) [Hadi,
Awais, Raza, 2020]. Wireless communication in the fifth generation is widely assumed to have a greatly
increased capacity and communication rate. The envelope amplitude distortion is caused by variations
in the input amplitude while amplifying the deviation from a straight line input-output transfer function
in the cut-off and saturation regions [Briffa, 1996; Ghannouchi, Hammi, Helaoui, 2015].

Figure 1. AM-AM amplitude characteristic of input/output signal

There are many approaches aiming to linearize the RF PA and keep a high efficiency at the same
time, including feedback linearization [Kang, Sung, Hong, 2020], feedforward linearization [Katz,
Wood, Chokola, 2016], analog predistortion and digital predistortion (DPD) [Guan, Zhu, 2014]. DPD
is often regarded as the most powerful linearization technology because of its versatility and great
performance. The correct modeling and linearization of wideband RF PA is now of great interest to
academics and engineers. In this case we used the following approach of using the DPD technique (see
Fig. 2).

From the mathematical point of view this approach can have the following formulation:

1
2
‖PA(DPD(x) + x) − x‖22 → min

DPD(x)
.

All signal distortions could be presented as additive changes. So, the optimization problem could
be reformulated in the following form:

1
2
‖DPDθ(x) − d‖22 → min

w
, (1)

where d = y − x.
A lot of DPD models have been proposed to compensate for the IMD’s that are generated in

the process of power amplification. For the time being, the most widely used Volterra-based models
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Figure 2. The technique of digital-predistortion

are memory polynomial (MP) [Ding et al., 2004], generalized memory polynomial (GMP) [Morgan
et al., 2006], and dynamic deviation reduction Volterra (DDR) model [Zhu, Pedro, Brazil, 2006].
But for wideband signals, a one-layer model doesn’t achieve the necessary performance. To accept
best performance in hardware mostly it’s use Wiener –Hammerstein (WH) model [Gilabert, Montoro,
Albertı́, 2006]. But in this particular situation, the ideas to stack more layers and use more coefficients
to achieve the best results cannot be used because we cannot realize a really nonconvex model with
a high count of model coefficients and because we shouldn’t spend a lot of power consumption and area
resources on a chip under high load in a power amplifier. It is necessary to choose these parameters
correctly because of these resources and since the final performance of the model depends on the
number of coefficients for various functions. Currently, state-of-the-art model design techniques are
based on the matching pursuit approach [Tropp, Gilbert, 2007; Becerra et al., 2018], but this type of
algorithm is applicable to a one-layer model, like GMP, because for this model, one can use least
squares (LS) estimation. For WH model, LS estimation cannot be used. As a result, in this case there
should be used least mean squares (LMS) estimation based on SGD like methods, as a result estimation
of every model spend a lot of time. LS estimation cannot be applied with the WH model. As a result,
least-mean-squares (LMS) estimation based on SGD-like methods should be used in this circumstance.
As a result, estimating each model takes a long time. While LS estimation is faster than LMS, the
greedy search process is not applicable in this scenario (the greedy search of the whole model will take
a lot of time). Thus, it is difficult to optimize the hyperparameter (HP) search process. For some types
of power amplifiers, it is not strictly required to use the whole set of model parameters; as a result,
we can minimize the model’s implementation area and power consumption in ASIC. As we mentioned
above, it depends on the hyperparameters of subfunctions, like an adaptive FIR filter, a polynomial,
etc. As stated above, the simulation process for this case is really long, and as a result, the count of
possible candidates from whole sets of hyperparameters should be reduced. So that in this article we
observe some traditional and state-of-the-art methods [Bardenet, Kegl, 2010; Auger, Hansen, 2012;
Ozaki et al., 2022] that can be applicable for this task.

Idea description

As previously said, the primary goal of this research is to obtain great performance with little
complexity automatically. This goal value is determined by the hyperparameters of several subfunctions
that comprise the entire model.

Thus, the following steps are proposed:

• choose a model which can be applicable for these simulations, choose a possible candidate of
dictionary;
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• define a appropriate algorithms for HP search;

• search for HP with low complexity and acceptable (high) performance.

To determine the resources of a viable model, we can simplify the problem of model creation to
a discrete optimization assignment. To calculate the model’s score, we must compare its performance
and complexity. To non-dimensionalize the model’s score (dB) (score), divide it by a value of the same
dimension (dB), so that the resulting value is more than zero and does not substantially exceed unity,
but still contributes to the result obtained; it must depend on the best model’s result (worst_score). In
this example, the difference was recommended in both the numerator and the denominator score(θ) −
− best_score; worst_score − best_score, because otherwise the model does not change much in the
achieved result, and it will have a value that does not alter the estimated model’s result. The same
idea was implemented for the valuation of the complexity part, but in this case it was decided to use
the relax coefficient γ to reduce the influences of changes in the value of the coefficient, because it
changes dramatically and mostly influences the score of this set of parameters. To solve this problem
it was decided to use the following loss function:

J(score, θ) =
score(θ) − best_score

worst_score − best_score
+ γ

complexity(θ) − lowest_complexity
biggest_model − lowest_complexity

, (2)

J −−−→
θ∈D min, (3)

where J is the objective function, θ is the set of hyper-parameters, D is the dictionary of all applicable
candidates of hyper-parameters, score is the error reached by model with set θ after N iterations
of optimization, best_score is the error reached by heavy model after n iterations, biggest_model is
the size of heavy model, complexity is the size of model with current set of hyper-parameters (θ),
worst_score = −20 dBc, lowest_complexity = 70 is the complex coefficient due to convenience
reasons, γ is regularization coefficient (γ = 0.1), to reduce the influence of current model size.

Model design algorithms

It is now widely accepted that many product line models are based on a cascade of massive and
extremely complex Wiener –Hammerstein [Gilabert, Montoro, Albertı́, 2006] models with a massive
number of parameters. As a result, there is an obvious problem: reducing the model’s complexity while
maintaining the original model’s performance. Because the model’s complexity is determined by the
hyperparameters of different subblocks, the process of reducing the complexity could be automated
into a multicriteria optimization process. In this study, we have verified state-of-the-art multicriteria
optimization methods that were well proven in various deep learning tasks:

• Grid Search,

• Random Search,

• Quasi Monte Carlo Method (QMC),

• Tree-Structured Parzen Estimator (TPE),

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES),

• Nondominated Sorting Genetic Algorithm II (NSGAII).

Grid Search (GS) is a greedy hyperparameter optimization method that ensures an optimal
solution in the given configuration space, however, it has an exponential time complexity. Since GS
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admits paralleling and simple calculations, it is still used [Shekar, Dagnew, 2019] in low-dimensional
configuration spaces.

Random Search is a stochastic optimization method that does not demand a gradient and can
be applied even to nondifferentiable functions. It is based on the GS method, but outclasses GS in
time performance due to a random choice of parameters instead of parameter enumeration, though its
optimal solution guarantee is asymptotic.

Monte Carlo (MC) methods belong to the class of computational algorithms which also use
random sampling under-the-hood, but they provide statistical estimates for the objective function by
generating random independent samples, in other words, they allow one to simulate desired probability
distribution. Many extensions of the MC, such as quasi-MC or Markov chain MC, allow an extension
of the boundaries in applications or ensure a better accuracy compared to MC, respectively.

Tree-structured Parzen Estimator (TPE) is another representative of Bayesian-class optimization
algorithms that is easy to use to calculate surrogate function as Sequential model-based optimization
methods (SMBO). TPE uses mechanisms similar to those of the Gaussian process, but indirectly,
usually comes up with the Expected Improvement (EI) acquisition function.

CMA-ES is a state-of-the-art nongradient evolutionary algorithm for optimization on continuous
domains, which has been shown to outperform the Gaussian search EDA. Notice that such a gradient-
free approach allows nondifferentiable kernels for the GP regression. We do make use of mixtures
in [Bardenet, Kegl, 2010], but rather restart the local searches several times, starting from promising
places.

Genetic Algorithm (GA) is a search heuristic strategy based on the natural selection principle.
GA evolves from the initial population to obtain the fittest candidate for the objective by selection,
crossover and mutation mechanisms similar to biological evolution tools. The ability of the strategy to
solve NP hard nonlinear optimization problems due to its fundamentals allows the authors [Young et
al., 2015] to apply GA to the hyperparameter optimization problem.

In the paper [Ozaki, Nomura, Onishi, 2020], the following recommendations were proposed
for the case we are considering — there is an upper limit of sequential calculations, a low level
of calculations parallelism, no model conditional parameters: GP-EI (Gaussian Process – Expected
improvement), SMAC (Sequential Model-based Algorithm Configuration), TPE, and in the case of
implementation of parallel computing, GA and CMA-ES. Researchers in [Shekhar, Bansode, Salim,
2021] compared not only sampling algorithms, but also their implementations in different frameworks —
as a result, Optuna with TPE algorithm demonstrated the most balanced results on submitted data sets.
In turn, [Balázs et al., 2021] provides experimental results showing that CMA-ES deals well with
a global minimum problem.

Grid Search and Random Search

The simplest of the above methods is a grid search when we iterate through all possible sets of
hyperparameters and choose the one that provides the smallest value of the objective function. The main
flaw is that the increase in hyperparameter dimension causes significant (exponentially) computational
complexity growth.

On the other hand, one can improve performance by choosing a set of hyperparameters manually
or using both manual search and grid search [LeCun et al., 1998; Larochelle et al., 2007]. However, in
this case reproducing results seems to be a real problem. In their work, the authors [Bergstra, Bengio,
2012] went further by suggesting an algorithm based on a random selection of a set of hyperparameters.
Namely, this technique for estimating and evidence of random search technique high performance
compare to grid search in [Bergstra, Bengio, 2012] for spaces that have high dimensions, but lower
effective dimensions — when the desired function is more sensitive to changes in one dimension than the
other. In this case it is possible, for example, to approximate a function of two variables by a function
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of one variable. The results of [Bergstra, Bengio, 2012] were shown in comparison with [Larochelle et
al., 2007] on the MNIST-based (basic, background, rotated and etc) and rectangles data sets.

Quasi Monte Carlo Method

Unlike the previous methods, Bayesian optimization (BO) algorithms [Mockus, Tiesis, Zilinskas,
1978] use the a posteriori knowledge obtained as a result of performing the previous steps to generate
the current step. As the name suggests, this method is based on the Bayesian theorem:

p(x|y) =
p(y|x)p(x)

p(y)
.

A distinctive feature of BO is the construction of be a so-called surrogate function approximating
the target function in order to make calculations faster and cheaper. The Monte Carlo method is
one of the most well-known and extensive tool families in Bayesian optimization. The Monte Carlo
method is indeed a universal approach for solving applied computational problems: in engineering,
for instance, navigation and localization problems [Enayati et al., 2016; Ortiz, Yu, Li, 2019] or signal
processing [Martino, Elvira, 2021]; in natural sciences, for trajectory design in astrophysics [Nickel et
al., 2016], thermal effect analysis [Molina, Finzi, 2006]; in machine learning in the hyperparameter
optimization problem [Snoek, Larochelle, Adams, 2012; Rakotoarison, Schoenauer, Sebag, 2019;
Campbell et al., 2021].

In general, the key steps of MC-family algorithms are:

1) determine possible input variables and their interconnection,

2) generate input elements from the predefined distribution,

3) perform deterministic transformations with sampled elements from p. 2,

4) calculate distribution estimations from p. 3.

Mathematically, the concept of MC integration can be formulated as evaluation of the integral
in the form:

I =
∫

f (x)π(x) dx

for an arbitrary pdf π(x) with
∫

xπ(x) dx that does not have a closed solution. Drawing samples x

from π(x), we can approximate the integral as the average of f (x) — let xiN
i=1 be N distributed

independently and identically from π(x), and assign the sample mean of f :

IN =
1
N

N∑
i=1

f (xi).

Based on the theory, we get
In → I as N → ∞.

As follows from step 2 of the Monte Carlo algorithm, we select elements from a predetermined
random distribution, while in quasi Monte Carlo, quasi-random sequences are used, which are
distributed more evenly in the area where the integral is required to be calculated. In other words,
quasi-random variables have the property of low discrepancy. This improves the accuracy and slightly
the speed of calculations.
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Covariance Matrix Adaptation Evolution Strategy

As mentioned above, CMA-ES is a powerful tool for nonlinear optimization, which successfully
deals with nonconvex, nondifferentiable problems even with local optima. Moreover, unlike other
members of the evolutionary family, CMA-ES does not have, according to [Auger, Hansen, 2012]:

1) large population sizes necessity,

2) early convergence of the population,

3) poor performance on badly scaled objective functions.

Since CMA-ES is an evolution algorithm, it includes principles of natural selection, namely, selection,
mutation and crossover to maximize the probability. Then the population of new particles (candidates,
individuals and etc) is slightly similar to the Markov model:

x(g+1)
n ∼ m(g) + σN

(
0, C(g)

)
, n = 1, . . . , λ, (4)

where N is a multivariate normal distribution, x — nth offspring from generation g+1, m — mean value
of the search distribution at generation g, σ — overall standard deviation (step-size) at generation g,
C — covariance matrix at generation g. This is fundamental equation of CMA-ES. In general, it consists
of 4 main steps:

• new particles sampling,

• particle selection and recombination (moving the mean),

• adapting the covariance matrix,

• step-size control.

It can be seen from (4), the aim of remaining steps is to calculate m, C, σ for the next step
(generation) g + 1. The new mean is the weighed average of n chosen points from x:

m(g+1) = ωT x, ω, x ∈ Rn,

n∑
i=1

ωi = 1, ω1 � ω2 � . . . � ω > 0. (5)

Then the variance effective selection formula is introduced and equations (5) are rewritten. The
covariance matrix can be calculated both empirically with sampled particles

C(g+1)
emp =

1
λ − 1

λ∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝xg+1
i − 1

λ

λ∑
i=1

xg+1
j

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝xg+1

i − 1
λ

λ∑
i=1

xg+1
j

⎞⎟⎟⎟⎟⎟⎟⎠
T

and using the definition:

C(g+1)
λ =

1
λ

λ∑
i=1

(
xg+1

i − m(g)
) (

xg+1
i − m(g)

)T
.

Then the weighed selection mechanism transforms the equation above, and as the result of comparing
it with the Estimation of Multivariate Normal Algorithm (EMNA) in [Larrañaga, 2002] we have the
effective selection mass coefficient μ that has to be updated. Thus, it can be placed here. A full
description of the CMA-ES according to [Hansen, 2016] is given in appendix.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



Application of discrete multicriteria optimization methods for . . . 289

Nondominated Sorting Genetic Algorithm II

The genetic algorithm (GA), like the CMA-ES, refers to evolutionary algorithms solving
constrained and unconstrained optimization and search problems. So far, this algorithm has been
successfully used in various fields: financial markets [Francescomarino et al., 2018], image processing
[Sheta, Braik, Aljahdali, 2012], computer science [Alibrahim, Ludwig, 2021], control engineering
[Belyaev, Sumenkov, 2021], physics [Tani et al., 2021] and so on.

GA is well-fitted for black-box optimization since it does not require derivatives, its basic
working principles provides capability to both parallel calculations and continuous performance
improvement GA is not suitable for solving simple problems with an excess of input data, the fitness
function must be chosen correctly, because it is calculated repeatedly, it is guaranteed to improve the
result of work, but not to achieve an optimal solution.

We have a population whose members, at each step, cross, breed to form new representatives,
from which the most suitable for the task at hand is selected. After that everything happens all over
again. A more detailed description of GA is shown below.

• Initialization,

• Selection,

• Crossover and mutation,

• Evaluation.

At the initialization step, the initial population is set randomly from the entire search space
(random initialization) or predefined (heuristic initialization).

During the selection stage, individuals are specially selected and then paired to reproduce
offspring in order to improve their performance through a new combination of genes. This stage
is important in order to determine the area of the prostrate where the population is more likely to
improve.

One of the essential things that should be designed is the measure of how well the offspring meets
the optimality of the solution in the genetic algorithm — the fitness function. It should be calculated
fast enough because it is called many times during GA epoch.

Hence, the question whether the population will not degenerate if we constantly select the most
suitable offspring, but in GA this problem is solved.

Then there is a crossover stage, when the genes from at least of two parental sequences
(chromosomes) are selected and then swapped to generate offspring population of the same size. The
way it happened depends on the type of crossover — one point, uniform or some other crossover type.

There is one more important stage — mutation, which serves to introduce diversity into
the population, because by selecting individuals with the best fitness function, our population can
degenerate. Mutations are random in nature with a relatively low probability. With a high degree of
mutation, however, the GA in a sense is simplified into a random search algorithm. In essence, the
crossover and mutation phase can be combined in meaning as the generation phase of a new and
improved generation.

The next step, not reflected in the list, is when the old generation is replaced by the new one
with a better fitness function value.

Now let’s move directly from the GA to NSGAII, which was introduced in 2002 by [Deb et al.,
2002] to improve and outperform existed multiobjective evolutionary algorithms (MOEA) that have
several disadvantages:

• complexity O
(
MN3

)
, where M is number of objectives and N is the population size;
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• nonelitism approach is the lower computational speed;

• user determined sharing parameter.

Omitting the details, NSGAII design solved all of these problems, overall complexity was
reduced to O

(
MN2

)
, including the introduction of a special approach called crowd-comparison,

which replaced the sharing function. This is why this algorithm is one of most standard varieties of
evolutionary algorithms and can be successfully applied to the hyperparameter optimization problem
[Alibrahim, Ludwig, 2021; Binder et al., 2019; Morales-Hernández, Van Nieuwenhuyse, 2022].

Tree-Structured Parzen Estimator

In many application tasks such as control theory problems, model dynamics simulation,
hyperparameters search and adjustment, it is necessary to deal with situations where the object under
study f has a black-box structure. In this case calculation of f is expensive in machine time terms, and
we often do not have complete information about f (for instance, high-order derivatives).

The model-based approach to tackle such problems has been known for a long time and has
been improved in recent years. The essence of model-based algorithms is to describe f using some
approximation f̂ called surrogate function, which is much easier to calculate and determines the point
at f that should be calculated. More specifically, the task is to find x∗ ← argmin

x∈X
f̂ (x). The Expected

Improvement (EI) criterion is often used as a functional when solving this problem. More specifically,
EI is the expectation of f of model M:

EI(x) =

∞∫

−∞
max

(
y∗ − y, 0

)
pM(y|x) dy,

where y∗ is some threshold. While GP-based approaches calculate the density p(y|x) directly, the Tree-
Parzen Estimator simulates p(x|y)p(y). If we take into account the fact that the configuration space is
represented as a generating process in the form of a graph. Thus, X is the tree-structured configuration
space, f : X → R is an objective function to be minimized and x∗ has to be found. TPE models p(x|y)
with two pdfs in the form:

p(x|y) =

⎧⎪⎪⎨⎪⎪⎩
l(x) if y < y∗,
g(x) if y � y∗.

As for the objective function (SMBO), namely EI, according to [Bergstra et al., 2011], it transforms
into:

EI(x) =

∞∫

−∞
max

(
y∗ − y, 0

)
pM(y|x) dy =

y∗∫

−∞

(
y∗ − y

)
pM(y|x) dy ∝

(
γ + (1 − γ)g(x)

l(x)

)−1

,

where γ = p (y � y∗). Thus, the authors [Ozaki et al., 2022] have developed a TPE algorithm based on
the formulas above, a block diagram of which is shown in the appendix.

Experiments

Model Description

As we mentioned above, the Wiener –Hammerstein model was used in this experiment, and
specifically an instance of the Wiener –Hammerstein cascade model [Ghannouchi, Hammi, Helaoui,
2015], those structure is presented in Fig. 3, was chosen to refine robustness and enhance performance.
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Figure 3. Two-layer block model of the Wiener –Hammerstein type

The following is a formal mathematical model for the case of two layers: the outputs of the first
z-layer and the second y-layer are the sum of the results returned from Rz and Ry, respectively, identical
blocks. Each of these blocks is described as a combination of convolution, polynomials and lookup
table functions applied to the input signal:

blockHCS ,H
lut,C,k(x) := convk,Hlut(x) +

P∑
l=0

Cl · convk,Hl

(
x · |x|l

)
, (6)

where Hlut ∈ CM , HCS ∈ CK×L =
{
Hl ∈ CK | l ∈ {1, . . . , L}

}
denote weights of convolutions, C ∈ CP are

weighting coefficients of gains in lookup table functions, φp is a polynomial function of arbitrary order
applied to the input vector to activate special gain for quantized amplitude of the complex input,
convk,H is the convolution of the input vector with a vector of weights H and shift k ∈ N [Ghannouchi,
Hammi, Helaoui, 2015]:

convk,H(x) :=
N∑

n=1

Hnxk−n+1.
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Thus, the presented two-layer model is described as follows:

zk(x) =
Rz∑

r=1

block
HCS ,z ,H

lut
z ,Cz,k

(x) + x,

yk(x) =

Ry∑
r=1

block
HCS ,y,H

lut
y ,Cy,k

(z(x)).

(7)

As a result, we get a computational graph characterized by the following hyperparameters θ
(such a set for each layer):

1) M, L is the width of applied convolution,

2) P is the number of polynomial degree,

3) R is the number of blocks in a layer (5 for all experiments);

and having the following set of weights:

w :=
(
Hlut

z , HCS ,z, Hlut
y , HCS ,y, Cz, Cy

)
,

where

HCS ,z ∈ CRz×Nz , Hlut
z ∈ CRz×Mz

HCS ,y ∈ CRy×Ny , Hlut
y ∈ CRy×My

⎫⎪⎪⎬⎪⎪⎭ convolution weights,

Cz ∈ CRz×Pz , Cy ∈ CRy×Py
}

polynomial weights.

The total number of model parameters can be calculated as follows: N = Rz(Mz × L + Pz) +
+ Ry(My × L + Py).

Optimization task

Closed-loop hyperparameter optimization algorithm

As described in the first part of the chapter, the problem of reducing the complexity of the model
while maintaining the performance can be reduced to the problem of multicriterion optimization task
“Idea description” using the presented algorithms “Covariance Matrix Adaptation Evolution Strategy”,
“Quasi Monte Carlo Method”, “Nondominated Sorting Genetic Algorithm II”, “Tree-Structured Parzen
Estimator”, using a certain method of changing the error (3). Then, this process can be reduced to the
following sequence of actions.

Details of internal process optimization

In the following experiments we use 100 MHz training signals. Because in “Model Description”
there are less than 300 coefficients it was decided to use the whole signal for training and validation.

Based on θ, the set of parameters model initializes the whole polynomials as zeros values and
ones in the middle coefficients of FIR to get the performance of the model, an optimization process
based on (1) problem was started.

According to the previous research, one of the best SGD like optimization methods for DPD
task is Adam [Maslovskiy et al., 2021]. So, in these simulations we used Adam optimizer with initial
learning rate 0.01 and StepLR scheduler with factor γ = 0.95 and step size 5.

In the process of internal optimization each model is trained 20 epochs. The batch size is equal
to 32 and the length of signal sequance is 1024 (4). The random seed is fixed.
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Algorithm 1. Closed-loop hyperparameter optimization algorithm

Require: set of HP X
while J do
if Termination condition satisfied then
break

else
Choose particular θ ⊂ D
Initialization NN model with θ
Internal optimization process
Calculating objective function (2) J (score, complexity)

end if

Figure 4. The tensor for model optimization process

To check the performance of the whole model in our simulations we decided to use two types of
metrics Normalized Mean Squared Error (NMSE) and Adjacent Channel Leakage Ratio (ACLR)
as a quality measure:

NMS E(y, y) = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
k=1
|yk(x) − yk |2

m∑
k=1
|xk |2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dB.

This metric allows one to check the performance model in the whole spectrum area.

ACLR = 10 log10

PowerA jacent Chanel

PowerMain Channel
.

Figure 5. Adjacent Channel Leakage Ratio (ACLR) description
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Simulation results

To assess the performance of the proposed models in comparison to existing models, several
experimental tests were conducted. Models was created in Python 3.8.12 using an open source machine
learning framework PyTorch 1.13.0 and Python. Finally, the model parameters were extracted and
trained on a server with a 2.60 GHz Intel Xeon Gold 6240 processor with 72 CPU threads and graphics
processing unit Nvidia tesla v100.

After a series of tests it was found that with fixed and the same for all parameters, the variant
number five copes with the task best. It is possible to achieve the best result by training the cells of the
selected architecture with different hyperparameters to further combine them into an ensemble. This
will significantly improve the results of the model. Each cell has 2 selectable parameters, the ensemble
has 5 cells, which means the model has 10 hyperparameters. To select the best coefficients, we used
a minimization algorithm and a dictionary of 6 AFIR parameters and 4 polynomial parameters used in
formulas (6), (7), which describes the plant:

D :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[3, 5, 7, 9] — convolution parameters,

[4, 5, 6, 7, 8, 9] — number of polynomial degree,

[−2, −1, 0, 1, 2] — shift convolution.

By enumerating the model parameters from the above dictionary, thereby changing its complexity
and affecting its score. Attempting to minimize the objective function J complexity and estimation is
constantly changing, but improvement on one parameter does not mean a better solution in general
and the best value can be obtained before the enumeration is completed. Each algorithm except
Baseline(GridSearch) had the same number of iterations of the external optimizer to fit the parameters.
The Figures 6, 7 and 8 show an example of how the TPE algorithm works, with three graphs showing
how the result changes with each iteration

Figure 6. Model complexity variation during the
optimization procedure with functional J. Complexity
value of chosen model is red circled

Figure 7. Model performance score on each trial
during the optimization procedure with functional J.
Score of chosen model is red circled

The models found and trained using the above methods show different rates of learning and
score. The convergence plots of the models are shown in Figure 9. When analysing the data, it can
be seen that almost every algorithm has had moments of upward and downward movement, which is
natural because of the nature of model learning.

The TPE and CMA-ES algorithms, according to the graphs, showed the best results over the
entire time, significantly different from the others, while not being affected by sharp jumps and almost
always adhering to the downward trend. It also seems from the graph that the TPE algorithm was the
winner, having converged to a minimum literally in the last iterations, but this is not entirely true.
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Figure 8. Functional J convergence with the Tree-Structured Parzen Estimator algorithm. The red circle
corresponds to the minimum value found — the chosen model

Figure 9. Comparison of different strategies of the
optimization process. The x-axis is the number
of optimizer iteration, the y-axis is the NMSE
value. The figure shows: TPE — Tree-structured
Parzen Estimator algorithm, CMA-E — Covariance
Matrix Adaptation Evolution Strategy, Random
Search, QMC — Quasi Monte Carlo Method, GA —
Nondominated Sorting Genetic Algorithm II. It
shows an estimate of the central tendency and
a confidence interval for that estimate

Figure 10. Normalized power spectral densities
signals (PSDs). The original signal is highlighted
in blue, while the other colors are the result
of the models. The figure shows: TPE — Tree-
structured Parzen Estimator algorithm, CMA-ES —
Covariance Matrix Adaptation Evolution Strategy,
Random search algorithm, QMC — Quasi Monte
Carlo Method, NSGAII — Nondominated Sorting
Genetic Algorithm II, Grid Search algorithm

The Tree-Structured Parzen Estimator algorithm did indeed perform very well, but the minimum object
function reached CMA-ES, as will be shown numerically later.

QMC, Random and NGAII algorithms showed quite frequent changes in the up and down trend
of the target function. The Random algorithm shows the largest scatter in neighboring iterations of the
optimizer.

And figure 10 shows comparison of the normalized power spectral density of the original signal
and the signal obtained after the trained models have been run.

The process of finding model hyperparameters, the models were trained for 20 epochs each to
speed up the loss function calculations. The data on NMSE, the optimization time, the complexity of
the found models, and the final value of the entered functional of the best found model for the given
parameters are presented in Table 1. As expected, the best result was achieved by a complete overrun
of the parameters. Grid Search algorithm was able to excel in functional value, showing a better
MNSE value while maintaining a fairly low complexity. However, this approach takes significantly
longer to find the optimal parameters than any other algorithm. At the same time, the Covariance
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Table 1. Simulation results with 20 epoch model training

Algorithm Complexity Objective loss NMSE dBc (20 Epoch) t, sec
Random 92 0.1064 −27.419 10598.6
TPE 90 0.0987 −27.259 8001.0
NSGAII 106 0.192 −27.324 7651.5
QMC 98 0.1465 −27.254 7609.3
CMA-ES 88 0.08 −27.491 7644.9
Baseline(GridSearch) 94 0.0797 −27.518 18263.7

Table 2. Simulation results with 500 epoch model training

Algorithm NMSE dBc (500 Epoch) ACLR (500 Epoch) Complexity
Random −27.99 −36.221 −37.554 92
TPE −28.253 −36.617 −36.689 90
NSGAII −28.254 −36.623 −37.969 106
QMC −27.828 −36.5074 −36.067 98
CMA-ES −28.205 −36.461 −37.811 88
Baseline(GridSearch) −28.456 −36.621 −36.948 94

matrix adaptation evolution strategy showed a similar MNSE model score, less complexity, but took
significantly less time to select the hyperparameters, almost identical to the best time.

This is enough to evaluate the performance of the resulting model, but not enough to fully utilize
the model in real-world conditions. Therefore, the best models found by different algorithms were
additionally trained for 500 epochs, in order to evaluate the efficiency change. The evaluation of these
models using NMSE and ACLR is presented in Table 2. When you increase the number of epochs, the
results are not much different. The QMC algorithm still shows the worst NMSE result, GridSearch the
best. However, the gain of the CMA-ES algorithm was less than that of the other models, which may
be a consequence of the fact that this model has the lowest complexity, which means that the gain with
increasing the number of epochs of training is also the lowest.

Based on the ACLR data from the simulations, we can conclude that the model built genetic
algorithm NSGAII showed the best performance in signal suppression at low and high frequencies, as
well as the greatest efficiency gain with increasing learning epochs. This may also be directly related
to the complexity of the model, which is the maximum, among the others.

As a result, we were able to achieve a reduction in the complexity of the model, as well as
a decrease in the search time for hyperparameters, with little decrease in performance.

Conclusion

In this article various method for solving the problem of synthesizing a digital pre-distortion
model of a power amplifier signal were reviewed and discussed.

According to the theoretical and practical results, the most suitable algorithms for multi-criteria
optimization are TPE and CMA-ES. The concept of a closed-loop optimization process based on the
Bayesian optimization method of the Tree-Structured Parzen Estimator (TPE) algorithm shows the best
median curve of convergence during the whole optimization process for different simulations. Another
concept of closed loop multi-criteria optimization, based on the Covariance matrix adaptation evolution
strategy (CMA-ES) algorithm, shows the best simulation results on the full convergence of the found
parameters of the model.

This strategy was compared with greedy algorithms like grid search and the non-dominated
sorting genetic algorithm with elite strategy (NSGAII). This type of algorithm allows for finding the
best parameters for the explained structure but requires significant computational resources because of
its structure.
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Lack of balance can lead to models that are either too simple or too complicated, which can
result in incorrect predictions and inefficient usage of valuable resources. A simple model may not
have enough sophistication to fully interpret the data, while an overly complex model may expend
excessive resources in the training process, resulting in high computational overheads. Therefore, the
best algorithms, which are presented in this article, can be used to solve optimization problems with
decreasing model resources.
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Appendix

Algorithm 2. Tree-structured parzen estimator

Require:
D =

(
x(1), y(1)

)
, . . . ,

(
x(k), y(k)

)
: observations

nt ∈ N: number of iterations
nc ∈ N: number of candidates
γ ∈ (0, 1): quantile
for t = 1, . . . , nt do

Dl = (x, y) ∈ D|y is included in the best — [γ|D|] objective values in D
Dg = D \ Dt
repeat

i = i ∈ [1, n] such that xi is active and x∗i has not been sampled
construct l(xi) with xi|(x, y) ∈ Dl and g(xi) with xi|(x, y) ∈ Dg

Ci = x( j)
i ∼ l(xi)| j = 1, . . . , nc

x∗i = argmax
xi∈Ci

l(xi)
g(xi)

until all active parameters have been sampled
D = D ∪ (x∗, f (x∗))

end for
return x with the minimum y value in D
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Algorithm 3. Covariance matrix adaptation evolution strategy algorithm

Set parameters
Set parameters λ, ωi=1, ..., λ, cσ, dσ, cc, c1 and cμ

Initialization
Set evolution paths pσ = 0, pc = 0, covariance matrix C = I, and g = 0
Choose distribution mean m ∈ Rn and step-size σ > 0 ∈ R

Until termination criterion met, g = g + 1
Sample new population of search points, for k = 1, . . . , λ

zk ∼ N(0, I),

yk = BDzk ∼ N(0, C),

xk = m + σyk ∼ N
(
m, σ2C

)

Selection and recombination

〈y〉w =
μ∑

i=1

ωi · yi:λ, where
μ∑

i=1

ωi = 1, ωi > 0, for i = 1, . . . , μ,

m← m + cmσ〈y〉w, equals
μ∑

i=1

ωi · xi:λ if cm = 1

Step-size control

pσ ← (1 − cσ)pσ +
√

cσ(2 − cσ)μe f f C
−1/2〈y〉w,

σ← σ × exp

(
cσ
dσ

( ‖pσ‖
E‖N(0, I)‖ − 1

))

Covariance matrix adaptation

pc ← (1 − cc)pc + hσ
√

cc(2 − cc)μe f f 〈y〉w,
ω◦i = ωi ×

(
1 if ωi � 0 else n/‖C−1/2yi:λ‖2

)
,

C ←
(
1 + c1δ(hσ) − c1 − cμ

∑
ω j︸�������������������������︷︷�������������������������︸

usually equals to 0

)
C + c1 pc pT

c + cμ

λ∑
i=1

ω◦i · yi:λ · yT
i:λ
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