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Finding PageRank vector is of great scientific and practical interest due to its applicability to modern search
engines. Despite the fact that this problem is reduced to finding the eigenvector of the stochastic matrix P, the
need for new algorithms is justified by a large size of the input data. To achieve no more than linear execution
time, various randomized methods have been proposed, returning the expected result only with some probability
close enough to one. We will consider two of them by reducing the problem of calculating the PageRank vector
to the problem of finding equilibrium in an antagonistic matrix game, which is then solved using the Grigoriadis—
Khachiyan algorithm. This implementation works effectively under the assumption of sparsity of the input matrix.
As far as we know, there are no successful implementations of neither the Grigoriadis— Khachiyan algorithm nor
its application to the task of calculating the PageRank vector. The purpose of this paper is to fill this gap. The
article describes an algorithm giving pseudocode and some details of the implementation. In addition, it discusses
another randomized method of calculating the PageRank vector, namely, Markov chain Monte Carlo (MCMC),
in order to compare the results of these algorithms on matrices with different values of the spectral gap. The
latter is of particular interest, since the magnitude of the spectral gap strongly affects the convergence rate of
MCMC and does not affect the other two approaches at all. The comparison was carried out on two types of
generated graphs: chains and d-dimensional cubes. The experiments, as predicted by the theory, demonstrated the
effectiveness of the Grigoriadis— Khachiyan algorithm in comparison with MCMC for sparse graphs with a small
spectral gap value. The written code is publicly available, so everyone can reproduce the results themselves or
use this implementation for their own needs. The work has a purely practical orientation, no theoretical results
were obtained.
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3anmaga moucka PageRank Bekropa mpeacTaBisieT OONMBIION HAYYHBIH U MPAKTHICCKUN WHTEPEC BBHUIY CBO-
el IpUMEHNMOCTH K paboTe COBPEMEHHBIX IIOMCKOBBIX cHCTeM. HecMOTps Ha TO, 4TO JaHHAs 3ajada CBOIUT-
Csl K TIOUCKY COOCTBEHHOTO BEKTOPa CTOXACTUYECKOW MATpHIbl P, MOTPeOHOCTh B HOBBIX AJITOPUTMAX IS €€
penieHus oOycioBiIeHa OONBIIUMHU pa3MepaMH BXOJHBIX JAaHHBIX. sl qocTikeHHus He Oojiee YeM JIMHEHHOTO
BPEMEHHU pabOThI MPUMEHSIOTCS Pa3IMYHBIC PAHIOMU3MPOBAHHBIC METOJbI, BO3BPAIIAIONIUE OXKUIAEMBIH OTBET
JIUIIH ¢ HEKOTOPOW JOCTATOYHO ONMM3KON K €AMHUIIE BEPOSTHOCTHI0. HaMu paccMaTpuBaioTCs Ba TAKHX CIOCO-
0a, cBosmIMe 3amMaqy oncka Bekropa PageRank k 3amade moncka paBHOBECHS B aHTarOHUCTHYECKON MaTpUIHOM
urpe, KoTopas 3aTeM pelraeTcs ¢ MoMolbio anropurMa [ puropuanuca— XauusHa. [Ipu aTom naHHas peanu3anus
3¢ (deKkTHBHO paboTacT B MPEIIOJIOKCHAN O Pa3peKEHHOCTH MATPHIIBI, MOJaBacMoil Ha BXoj. Hackoipko Ham
M3BECTHO, 10 CHX MOp HE OBLIO HM OJTHOM yCHEIIHOW peanu3aluy HU anroputMa ['puropuanuca— XayusiHa, HU
ero MpUMEHEHHUs K 3ajade moncka Bekropa PageRank. Jlannas crates cTaBuT mepen coOoi 3a1ady BOCIIOTHHUTH
3TOT TIpobei. B pabote mpuBOAUTCS OMICAHME ABYX BEPCHI alrOpPHUTMa C IICEBIOKOAOM M HEKOTOPBIE AETAIH UX
peammzarn. Kpome Toro, B paboTe paccMaTpuBaeTcs Ipyroil BepOSTHOCTHBIN MeTo rmoucka BekTopa PageRank,
a umeHHo Markov chain Monte Carlo (MCMC), ¢ 1ienbio cpaBHEHUS PE3yJIBTaTOB PabOThI YKa3aHHBIX aJITOPUT-
MOB Ha MaTpHIAX C PA3TUYHBIMHU 3HAYCHUAMH CIICKTPabHOM menu. [locieanee mpeacTaBiseT 0coOblil HHTEPEC,
MTOCKOJIBKY 3HAYCHHE CIIEKTPAIBHOM IIeNN CHIIBHO BIISIET Ha cKopocTh cxomumoctdt MCMC, u He oKa3bIBaeT HH-
KaKoTo BIMSHMS Ha [1Ba Ipyrux moaxoxa. CpaBHEHHE TMPOBOAMWIOCH Ha CTEHEPHUPOBAHHBIX rpadax IBYX BHAOB:
[eTI0YKax M d-MepHBIX KyOaX. IIpoBemeHHBIE SKCHEPUMEHTHI, KaK W TPENCKa3bIBaeT TEOPHS, IEMOHCTPUPYIOT
3¢ dextuBHOCTH anroputma ['puropuanuca— XauusHa nmo cpaBHeHH0 ¢ MCMC s pa3pekeHHBIX TpadoB ¢ Ma-
JICHBKMM 3HAUCHHUEM CIIEKTPaJIbHOM mieNi. Bech Kol HAaXOIUTCS B OTKPHITOM JIOCTYIIE, TAK YTOOBI BCE KETAFOIIHE
MOIJIM BOCIIPOU3BECTH IOJIyYE€HHBIE PE3YJAbTaThl CAMOCTOSATENBHO, WU K€ HUCIIOIB30BaTh JAaHHYIO peau3aluio
B CBOMX HyXHax. PaboTa mMMeeT YHCTO MPaKTHIECKYIO HAMPaBICHHOCTh, HUKAKMNX TEOPETHUECKHUX PE3yNbTaTOB
aBTOpaMH TOJY4EHO HE OBLIO.

Kirouessie croBa: I'puropuannc — Xaunsta, Markov chain Monte Carlo, PageRank
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Introduction

In this paper we consider the Grigoriadis — Khachiyan algorithm [Khachiyan, 2009], applied for
the problem of finding the PageRank vector. The PageRank problem was first formulated by Brin
and Page [Brin, Page, 1998], but remains to be important nowadays. The problem consists of finding
a stationary distribution of Markov Chain defined by a web graph, where websites are considered as
states with some probabilities of transition. More formally, given a stochastic matrix P € [0, 1], we
aim at calculating vector v satisfying the equality

Ply =v.

This can be done by iterative methods like, for example, power iteration, introduced in [Mises,
Pollaczek-Geiringer, 1929], which requires O (n3) time. To deal with large matrices, different
randomized algorithms with better time complexity were proposed.

Two of them, described in [Gasnikov, Dmitriev, 2015] and [Anikin et al., 2022], use the
Grigoriadis — Khachiyan algorithm. To our best knowledge, the only attempt at conducting experiments
for the Grigoriadis — Khachiyan algorithm, which was made in [Anikin et al., 2022], was not particularly
successful, as it demonstrated inaccurate results. We aim at feeling this annoying gap and present our
own comparison of the Grigoriadis — Khachiyan algorithm to other approaches.

The structure of this paper is the following: in Section 2 we describe three randomized methods
of finding the PageRank vector that we considered during our work, then, in Section 3, we describe
the experiments and present the obtained results, finally, in Section 4, we make a conclusion based on
the observations.

Methods

In this section we describe approaches that have been considered in our work, giving some
necessary comments on their implementation. Throughout this section we use the following notation
and conventions:

1) I, is an n X n identity matrix;

2) 0, (1,) is a column-vector of zeros (ones) of length n;

n
3) S,():= {x eo, 11" X x; = 1} 1s a set of stochastic vectors;
i=1
4) we say that vector v is an g-optimal solution in the sense of two-norm if ||v — v*||, < &, where v*
is the true PageRank vector;

5) we say that vector v is an g-optimal solution in the sense of infinity norm if H(PT -1 ) VH <e

(9]

Markov chain Monte Carlo method

The idea of using the Markov chain Monte Carlo method (MCMC) for solving linear equations,
as well as the Monte Carlo method [Ermakov, 2009], is not novel. Applied to PageRank problem, it
can be implemented more efficiently as one can use the properties of matrix P to accelerate the step
of random walk. We introduce a pseudocode of this algorithm, based on the one given in [Gasnikov,
Dmitriev, 2015].

The idea itself is very simple: we start a random walk on graph and count the frequency of
visiting each vertex. Exactly this vector of frequencies will be the resulting one. To make it more
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Algorithm 1. MCMC

ga,.n> *g,o,a,n’

n
Require: 79 : T ; P e R™: Elpij=1Vi€{1,---,n}

n
Ensure: x e R": } x. =1

i=1
X0 > Counter
k1 > We start our random walk from the vertex 1
t<20 > Time
while r < T do

&£,0,a,n
if 1> T0,, then
X, <X, +1 > where k is an id of the current vertex
end if
Choose k according to matrix P.
te—1t+1
end while

. return

D A T e

_
e

X

0
Ts,a',a/,n _Ts,(y,n

—_
—_

iteration and continue till 7 where T

reliable, we start counting frequencies only from T ond®

start
and T, , are the parameters of the algorithm and will be studied a little bit later.

start

We will give some details about step 8 of MCMC algorithm, as it is the most time-consuming
part. While initializing a graph, for each vertex v we store the vector w” of cumulative probabilities
for the outgoing edges, i.¢., w; equals the probability of moving to one of the first k — 1 neighbors as
soon as we ordered them in any way.

Thus, located in vertex v, one can generate & from uniform distribution on (0, 1] and then, using
a binary search, find such i that w} < & < w?, |, which certainly can be done in O(logn). This i defines
the neighbor to move to.

Turning back to T,,,, and T, ,, it is known [Gasnikov, Dmitriev, 2015] that to get a solution that

is g-optimal in the sense of the two-norm, with a probability not less that 1 — o, it is sufficient to put

1 n
Tstart = 0(5 ln(g))

and
lnnln((ﬂr)
Tend =0 T .
Here « denotes a spectral gap of matrix P, i.e. if 4, 4,, ..., 4, are the eigenvalues of matrix P

and [, > [4,] > ... > |4,], then

Notice that in the case of a stochastic matrix 4, is always equal to 1 and [4,| < 1, therefore a > 0 (for
more details see, for example, [Seneta, 1981]).

With such T and T,, values, MCMC obtains a result in

ofps )

start

ag?
arithmetic operations.
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Grigoriadis — Khachiyan algorithm

We consider two different variations of applying the Grigoriadis — Khachiyan algorithm to the
PageRank problem.

First approach. Recall that we aim at finding a vector v such that
(P"-1,)v=0.

This can be rewritten as
H(PT - In)VH -0

and thus, calculating the PageRank vector is equivalent to the optimization problem
H(PT - In) VH — min,
[ee]
as soon as we know that the PageRank vector exists. Defining
B:=pP" -1,

we get the problem of finding equilibrium in the matrix antagonistic game (for more details
see [Khachiyan, 2009]):

max {u, Bv) — min. 1
ueSn(1)< > v ( )

To apply the Grigiriadis — Khachiyan algorithm, following [Khachiyan, 2009], (1) can be reduced to
the symmetric case by building a new matrix

0 B -1,
A=|-BT 0 1,
17 -17 o0

and by considering the optimization problem

max (u, AX) > min

ues 2n+1 XeS§ 271+1(1)

Ify=(x

We present a pseudocode of this approach based on the one from [Gasnikov, Dmitriev, 2015].
The main idea is rather simple: starting with a vector w := 1,, we generate a column with probabilities
proportional to w and then iterate through this generated column, updating vector w.

T . y . . . .
il o0 Xo,) 5 then v i= T, 18 the solution to the original problem.

The most challenging part of this algorithm is generating column and updating vector w. To
deal with it, we use a structure based on a balanced binary tree, where leaves correspond to columns.
Every node of this tree contains the sum of weights of its child nodes. Thus, one can easily generate
a leaf starting from the top node and moving down, every step doing a choice between two child
nodes according to their weights. Updating the weight of a leaf is also quite simple procedure: starting
from this leaf, one moves up to the top, changing weights in order to maintain the invariant. Both
of these require O(logn) time and so each step of the Grigoriadis — Khachiyan algorithm can be done
in O(dlogn) time, where d is the number of nonzero elements in column. In [Gasnikov, Dmitriev,
2015] it is shown that given € and o

0 (ln n—In a’)

&2

2023, T. 15, Ne 2, C. 369-379




374 D. A. Skachkov, S. G. Gladyshev, A. M. Raigorodskii

Algorithm 2. Grigoriadis — Khachiyan for the PageRank Problem (1% approach)

Require: P, T, &
n
Ensure: x e R": } x; =1

Build matrix Alfrlom P.
X0, > Counter
wel, . > All weights are equal
fort=1,..., T do
Choose k randomly from {1, ..., 2n + 1} with weights w.
ifke{n+1,...,2n} then
Xk—n < Xk—n +1
end if
fori=1,...,2n+1do
Wi < W; eXp (%Aik)
end for
end for

return v = X

0
Ts.rr,(y,n _Ts,(y,n

steps is enough to achieve an g-optimal solution in the sense of infinity norm with probability not less
than 1 — o. This fact implies total time-complexity equal to

0(n+dlnnln(§)]’

g2

where d is the maximum number of nonzero elements both per rows and columns of matrix P.
Second approach. This approach was taken from [Anikin et al., 2022]. Just as before, we
consider an optimization problem
[|(P = 1)||,, — min.

Following [Nemirovski et al., 2009], this can be set up as

min max {(x, A
xeSn(l)yeSzn(l)< y>

with
A:=(P-1)J

where J := [, —1,].

We give the pseudocode based on the one from [Anikin et al., 2022]. The main idea of it is
a simulation of a 2-player game, where on every step both player 1 and player 2 choose independently
a column and a row, respectively, and then update their probabilities vectors according to the choice of
the opponent, using the parameters /' and /2. To generate values and change weights, we use exactly the
same structure as the one mentioned in the description of the Grigoriadis — Khachiyan algorithm. The

vector of frequencies for the rows to be chosen by player 2 is exactly the required PageRank vector.
It is claimed in [Anikin et al., 2022] that

)
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steps is enough to obtain a solution that is g-optimal in the sense of infinity norm, with probability
not less then 1 — o, if the parameters /' and /*> are chosen in an appropriate way. Moreover, the total

complexity is equal to
dlnnln (2
&2

where d is the maximum number of non-zero elements both per rows and columns of matrix P.

Algorithm 3. Grigoriadis — Khachiyan for the PageRank Problem (2" approach)
Require: P, T, 2

n
Ensure: x € R": Z X, = 1

i=1
Build matrix A from P.

1:

2we 1,

3w 1,

4: fort=1,..., T do

5 Choose j randomly from {1, ..., 2n} with weights w.
6: Choose i randomly from {1, ..., n} with weights w’.
7: X, — X, +1

8: for s=1,...,2ndo

9: W, — W, exp (llAl‘S)
10: end for

11: for s=1,...,ndo
12: Wi Wi exp (ZZASI.)
13: end for
14: end for
15: return %

Experimental results

In this section we present the obtained experimental results. All of the experiments can be
reproduced with the help of the code from our GitHub: https://github.com/gladyshS1/Grigoriadis_Kha-
chiyan.

We tested the approaches from Section 3 in the following cases:

1) simple chain,
2) d-dimensional cube.

We’ll describe their generation in more detail.

Simple chain. To build a chain, we first generate an unordered chain of length n and then replace
each edge with a pair of oriented edges, each having the probability of % Since two boundary vertices
have one outgoing edge, their weight should be equal to 1. We give an example of such a graph in

Fig. 1.
- - isv= (- L _L L1y
For a simple chain the PageRank vector is v = (2(n_1) s R e, 2(n_1))

As can be seen from Table 1, the values of the spectral gap for chain graphs are extremely small,
which is fatal for MCMC. But we will give another, more intuitive, look at the reasons why chain
graphs can be a challenge for MCMC. According to the Law of the iterated logarithm [Khintchine,
1924], with very high probability MCMC wouldn’t visit all vertices of chain faster than in n” steps,
thus MCMC can’t be expected to obtain a proper result in linear time.

2023, T. 15, Ne 2, C. 369-379




376 D. A. Skachkov, S. G. Gladyshev, A. M. Raigorodskii

’ | G . ’ - ’ .
. 0.5 . 0.5 . 0.5 ‘ 1 .
Figure 1. An example of a chain web-graph consisting of 5 vertices. The numbers inside the vertices mean the

index of the vertex. The numbers near the edges indicate the probability of transition between the corresponding
vertices

Table 1. Values of the spectral gap for chains and d-dimensional cubes, where n denotes the number of vertices

n chain d-cube
241 2.107 | 0.14
217 | 3.107!1 0.12
220 1 5.10°8 | 0.10

d-dimensional cube. We set all weights of edges equal to %, since each vertex has

1 1 1

3 3@ - 27)T, which follows from

exactly d neighbors. The PageRank vector is equal to v = (
the uniformity of the graph.

The values of the spectral gap are presented in Table 1. As they are not too small, one can expect
a proper work of MCMC.

All approaches were tested on graphs of size 2! = 16,384, 2!7 = 131,072 and 2% = 1,048,576.
The parameters for MCMC are presented in Table 2. Following [Gasnikov, Dmitriev, 2015], we
set T, equal to % For the Grigoriadis — Khachiyan algorithm we took ¢ = 0.01. Figure 3 shows
the results of the algorithms on chain graphs of different sizes and Figure 4 those on cube graphs.

Table 2. Parameters of the MCMC algorithms, where T

from, and T, , is the total number of iterations

are 18 the number of iteration to start counting frequencies

start end

2141 2.10° | 10°
2171 2.10° | 10°
220 | 2.10° | 107

Figure 2. An example of a cube web-graph consisting of 8 vertices. The numbers inside the vertices mean the
index of the vertex. The numbers near the edges indicate the probability of transition between the corresponding
vertices
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Graph “chain”; n = 16,384 Graph “chain”; n = 16,384
—— MCMC W _2 - — MCMC
— QK1 — GK1
21 ko — GK2
— -3
_8 4 ~~~
= —41 o
| T —4 -
% -6 =
= W51
m p—
S -8
_6 4
_10 4
T T T T T T —7 1 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t le6 t le6
(@) (b)
Graph “chain”; n = 131,072 Graph “chain”; n = 131,072
— MCMC W _2 J — MCMC
—— CK1 — GK1
=21 __ axo — GK2
/-E —3 1
= —4 >
| | =4
N o0 _ g |
B -8 g3
~101 6]
| | | | | — -7 ! ! . : i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t le6 t le6
() (d)
Graph “chain”; n = 1,048,576 Graph “chain”; n = 1,048,576
— MCMC W —— MCMC
_2- — GK1 _3- — GK1
— CK2 — GK2
4 e
= )
I -6 T -5
% g =
= = z;b —61
& -10-
_7 4
_12 4
14 8
00 02 04 06 08 10 00 02 04 06 08 10
t le7 t le7
() (®

Figure 3. Comparison of the convergence rate of algorithms for chain graphs with n vertices, where a) n = 2'4;
b)yn=2"%c)n=2";d)n=2";e)n=2%;f) n=2% Onthe Ox axis it is  — the number of iterations, Oy —

[lv =v*l, (cases (b), (d), (f)) and log H(PT - I) vH (cases (a), (c), (e)), where v is the obtained vector, and v* is
the optimal one
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log ('PTx - x|m)

Graph “cube”; n = 16,384

——t

— MCMC
— GK1
— GK2

06 08 10
t le6
(@)
Graph “cube”; n = 131,072

00 02 04

1 — cxe

—— MCMC W

— GK1

06 08 1.0
t le6
(©)

Graph “cube”; n = 1,048,576

00 02 04

4+ — GK1

— MCMC W—

— GK2

06 08 10
t le7
(e)

00 02 04

-3.5
~4.0
—4.5
~5.01
5.5
~6.01
6.5
~7.04

log(lx —vl,)

—3.51
—4.01
—4.51
-5.01
—5.51
—6.01
—6.51
7.0

10g(|-x - V|2)

-4.54
—5.01
-5.51
—6.0 1
—6.51
=7.0
=7.51
-8.01

log(|x - Vlz)

Graph “cube”; n = 16,384

—— MCMC
— GK1
— GK2

00 02 04 06 08 10

t le6
(b)
Graph “cube™; n = 131,072

—— MCMC

— GK1
— GK2

T T T T T T

00 02 04 06 08 10
t le6
(@
Graph “cube”; n = 1,048,576
—— MCMC
— GK1
— GK2
00 02 04 06 08 10
t le7
®

Figure 4. Comparison of the convergence rate of algorithms for cubes graphs with n vertices, where a) n = 2'4;
b)n=2"c)n=2"7;d)n=2";¢)n=2%; f) n=2%. On the Ox axis it is t — the number of iterations, Oy —
Ilv —v*|l, (cases (b), (d), (f)) and log H(PT - I) va (cases (a), (c), (e)), where v is the obtained vector, and v* is
the optimal one
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In the first columns in Fig. 3 (chain graphs) and Fig. 4 (cube graph) one can see the dependence
of the H(PT —I) VH on the number of iterations and in the second columns, the dependence of

the ||[v —v*||, on the number of iterations, where v is the obtained vector and v* is the true PageRank
vector.

Conclusion

The experiments have shown the difference between the Grigoriadis — Khachiyan algorithm and
other methods: they confirmed that on sparse graphs with extremely small value of spectral gap the
Grigoriadis — Khachiyan algorithm works much better than MCMC. To our best knowledge, we are the
first to implement the Grigoriadis — Khachiyan algorithm, at least in the scientific sphere, and we hope
that our experience may be helpful to others.

References

Tacnuxos A. B., [Imumpues /. FO. O6 3pGhEKTUBHBIX paHIOMU3HPOBAHHBIX aJITOPUTMAaX ITOMCKA BEK-
Topa PageRank // JKypHan BEIUMCIHTENFHON MaTeMaTHKH M MaTeMaThHueckoi ¢usuku. — 2015. —
T. 55, Ne 3. — C. 355-371.
Gasnikov A. V., Dmitriev D. Yu. Ob effektivnykh randomizirovannykh algoritmakh poiska vektora PageRank [About
effective randomized algorithms for searching for the PageRank vector] // Journal of Computational Mathematics and
Mathematical Physics. — 2015. — Vol. 55, No. 3. — P. 355-371 (in Russian).

Epmarxos C. M. Meton MonTe-Kapno B BeluHcIuTe bHOM Maremaruke: BBoa. Kypc. — CII6.: HeBckwuii
Huanext, bunom, Jlaboparopus 3uanuii, 2009.
Ermakov S. M. Metod Monte-Karlo v vychislite]'noi matematike: vvod. kurs [The Monte Carlo method in computational
mathematics: an introduction course]. — St. Petersburg: Nevsky Dialect, Binom, Laboratory of Knowledge, 2009 (in
Russian).

Xauusn JI. I I36pannsie Tpyas! / coct. C.I1. Tapacos. — M.: MITHMO, 2009. — C. 38-48.
Khachiyan L. 1zbrannye trudy [Selected works] / comp. S.P.Tarasov. — Moscow: MCNMO, 2009. — P. 38-48 (in
Russian).

Anikin A. et al. Efficient numerical methods to solve sparse linear equations with application to
pagerank // Optimization Methods and Software. — 2022. — Vol. 37, No. 3. — P. 907-935.

Brin S., Page L. The anatomy of a large-scale hypertextual web search engine // Computer networks
and ISDN systems. — 1998. — Vol. 30, No. 1-7. — P. 107-117.

Khintchine A. Uber einen satz der wahrscheinlichkeitsrechnung // Fundamenta Mathematicae. —
1924. — Vol. 6, No. 1. — P. 9-20.

Mises R. V., Pollaczek-Geiringer H. Praktische verfahren der gleichungsauflésung // ZAMM-Journal of
Applied Mathematics and Mechanics / Zeitschrift fiir Angewandte Mathematik und Mechanik. —
1929. — Vol. 9, No. 1. — P. 58-77.

Nemirovski A. et al. Robust stochastic approximation approach to stochastic programming // SIAM
Journal on optimization. — 2009. — Vol. 19, No. 4. — P. 1574-1609.
Seneta E. Non-negative matrices and Markov chains. — 2nd ed. — 1981.

2023, T. 15, Ne 2, C. 369-379





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [595.276 841.890]
>> setpagedevice


