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We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear objective and different
condition numbers with respect to the primal and dual variables. First, we consider such problems with smooth composite
terms, one of which has finite-sum structure. For this setting we propose a variance reduction algorithm with complexity
estimates superior to the existing bounds in the literature. Second, we consider finite-sum saddle-point problems with
composite terms and propose several algorithms depending on the properties of the composite terms. When the composite
terms are smooth we obtain better complexity bounds than the ones in the literature, including the bounds of a recently
proposed nearly-optimal algorithms which do not consider the composite structure of the problem. If the composite terms are
prox-friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing variance
reduction algorithms and, on the other hand, provides in the composite setting similar complexity bounds to the nearly-optimal
algorithm which is designed for noncomposite setting. Besides, our algorithms allow one to separate the complexity bounds,
i. e. estimate, for each part of the objective separately, the number of oracle calls that is sufficient to achieve a given accuracy.
This is important since different parts can have different arithmetic complexity of the oracle, and it is desired to call expensive
oracles less often than cheap oracles. The key thing to all these results is our general framework for saddle-point problems,
which may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm for
composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal mapping, which may
be of independent interest as well.
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В данной работе рассматриваются сильно-выпукло сильно-вогнутые не билинейные седловые задачи с разными
числами обусловленности по прямым и двойственным переменным. Во-первых, мы рассматриваем задачи с гладкими
композитами, один из которых имеет структуру с конечной суммой. Для этой задачи мы предлагаем алгоритм умень-
шения дисперсии с оценками сложности, превосходящими существующие ограничения в литературе. Во-вторых, мы
рассматриваем седловые задачи конечной суммы с композитами и предлагаем несколько алгоритмов в зависимости
от свойств составных членов. Когда составные члены являются гладкими, мы получаем лучшие оценки сложности,
чем в литературе, включая оценки недавно предложенных почти оптимальных алгоритмов, которые не учитывают
составную структуру задачи. Кроме того, наши алгоритмы позволяют разделить сложность, т. е. оценить для каждой
функции в задаче количество вызовов оракула, достаточное для достижения заданной точности. Это важно, так как
разные функции могут иметь разную арифметическую сложность оракула, а дорогие оракулы желательно вызывать
реже, чем дешевые. Ключевым моментом во всех этих результатах является наша общая схема для седловых задач, ко-
торая может представлять самостоятельный интерес. Эта структура, в свою очередь, основана на предложенном нами
ускоренном мета-алгоритме для композитной оптимизации с вероятностными неточными оракулами и вероятностной
неточностью в проксимальном отображении, которые также могут представлять самостоятельный интерес.

Ключевые слова: седловая задача, минимаксная оптимизация, композитная оптимизация,
ускоренные алгоритмы
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Introduction

Saddle-point optimization problems have many applications in different areas of modelling an
optimization. The most classical example is, perhaps, two-player zero-sum games [Morgenstern, Von
Neumann, 1953; Nash, John, 1950], including differential games [Isaacs, 1999]. More recent examples
include imaging problems [Chambole, Pock, 2011] and machine learning problems [Shalev-Shwartz,
Zhang, 2014], where primal-dual saddle-point representations of large-scale optimization problems are
constructed and primal-dual methods are used. Many nonsmooth optimization problems, such as �∞
or �1 regression admit a saddle-point representation, which allows one to propose methods [Nesterov,
2005b; Nemirovski, 2004] having faster convergence than the standard subgradient scheme. Recently,
saddle-point problems have started to attract more attention from the machine learning community
in application to generative adversarial networks training, where the training process consists of
a competition of a generator of nonreal images and a discriminator which tries to distinguish between
real and artificial images. Other application examples are equilibrium problems in two-stage congested
traffic flow models [Gasnikov, 2016].

From the algorithmic viewpoint the most studied setting deals with saddle-point problems
having bilinear structure [Nesterov, 2005b; Nemirovski, 2004; Carmon et al., 2019; Song, Wright,
Diakonikolas, 2021; Xie, Han, Zhang, 2021], where the cross term between the primal and dual
variable is linear in each variable. The extensions include bilinear problems with prox-friendly (i. e.
admitting a proximal operator in closed form) composite terms [Chambole, Pock, 2011; Lan, 2019].
A related line of research studies variational inequalities [Nemirovski, 2004; Lan, 2019] since any
convex-concave saddle-point problem can be reformulated as a variational inequality problem with
monotone operator. In this area lower bounds for first-order methods are known [Nemirovsky, Yudin,
1983] and optimal methods exist [Nemirovski, 2004; Nesterov, 2007; Nesterov, Scrimali, 2011; Chen,
Lan, Ouyang, 2017; Lan, 2019]. Notably, these works do not rely on the bilinear structure and allow
one to solve convex-concave saddle-point problems with Lipschitz-continuous gradients, including
differential games [Dvurechensky, Nesterov, Spokoiny, 2015]. An alternative approach, which mostly
inspired this paper, is based on representation of a saddle-point problem min

x
max

y
G(x, y) as either

a primal minimization problem with an implicitly given objective g(x) = max
y

G(x, y) or a dual

maximization problem with an implicitly given objective g̃(y) = min
x

G(x, y). This approach was used

in [Nesterov, 2005b; Nesterov, 2005a] for problems with bilinear structure and later extended in [Hien,
Zhao, Haskell, 2020] for general saddle-point problems. Such a connection with optimization turned out
to be quite productive since it allows accelerated optimization methods to be exploited. In particular,
recent advances in this direction are due to an observation [Gasnikov, Dvurechensky, Nesterov, 2016;
Alkousa et al., 2020; Ibrahim et al., 2020] that primal and dual problems can have different condition
numbers, which opens up a possibility to obtain faster algorithms.

In this paper we focus on strongly-convex-strongly-concave saddle-point problems with different
condition numbers κx, κy of the primal and dual problems, respectively. The classical upper

bound ˜O(κx + κy) for this setting is achieved by the algorithm of [Nesterov, Scrimali, 2011]. Recently,

[Ibrahim et al., 2020] proved a lower complexity bound ˜Ω
(√
κxκy

)

for first-order methods, which raised
the question of whether first-order methods can be accelerated for this setting. Independently [Alkousa
et al., 2019] proposed accelerated methods with improved, yet suboptimal complexity bounds. In [Lin,
Jin, Jordan, 2020] the authors improved the bounds of [Alkousa et al., 2020] and proposed an
algorithm with an optimal up to a polylogarithmic factor complexity bound ˜O

(√
κxκy

)

. Subsequently,
the logarithmic factors have been improved independently in the papers (we cite them in chronological
order) [Dvinskikh et al., 2020; Wang, Li, 2020; Yang et al., 2020]. The papers listed above consider
large-scale regime when primal and dual problems have large dimension and use gradient-type
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methods. If, say, the dimension of the primal variable x is moderate, one can use cutting-plane
methods [Gladin et al., 2020; Gladin et al., 2021] in combination with gradient-type methods. We also
mention the following papers which are related, but consider a different (from ours) setting of convex-
concave saddle-point problems [Zhu, Liu, Tran-Dinh, 2020], strongly-convex-concave and nonconvex-
concave [Thekumparampil et al., 2019], nonconvex-concave [Ostrovskii, Lowy, Razaviyayn, 2020; Xu
et al., 2020].

When an optimization problem has a special structure of finite-sum, also known as empirical
risk minimization problems, variance reduction [Lan, 2020; Lin, Jin, Jordan, 2020] techniques are
often exploited to reduce the complexity bounds. We are interested also in application of such
techniques for saddle-point problems. Variance reduction methods for saddle-point problems were
proposed in [Palaniappan, Bach, 2016] and recently improved in [Alacaoglu, Malitsky, 2021], yet
without distinguishing between primal and dual condition numbers.

In this paper we continue the line of research [Alkousa et al., 2020; Dvinskikh et al., 2020]
by exploring additional structure of the problem, such as finite-sum form and presence of composite
terms. We also develop algorithms which allow one to separate the complexity bounds for different
parts of the problem. The latter, in particular, means that for each part of the objective we estimate
separately the number of its gradient evaluations. This allows further acceleration to be obtained if
the smoothness constants and complexities of an oracle call for different parts are different since more
expensive oracles are called less frequently than it would be required by existing methods. Next, we
consider two main problem formulations which have additional structure and which we explore in
this paper. We also give a detailed explanation of the difference of our setting and bounds with the
literature.

The first problem formulation we are interested in is the strongly-convex-strongly-concave
saddle-point problem of the form

min
x∈Rdx

max
y∈Rdy
{ f (x) +G(x, y) − h(y)}, h(y) :=

1
mh

mh
∑

i=1

hi(y), (1)

where G(x, y) is convex in x and concave in y and is LG-smooth in each variable, f (x) is μx-strongly
convex and L f -smooth, h(y) is μy-strongly convex and Lh-smooth. We refer to the functions f and h

as composite terms. In this setting it is natural to define condition numbers κx =
LG
μx
and κy =

LG
μy

for the primal minimization and dual maximization problems, respectively. As already mentioned, the
most studied [Chambole, Pock, 2011; Lan, 2019] setting corresponds to a particular case of mh =

= 1 and bilinear function G(x, y) = 〈Ax, y〉 for some linear operator A and the functions f , g
being prox-friendly, i. e. admit a tractable proximal operator [Moreau, 1965], e. g. evaluation of the
point argmin

x

{

f (x) + 1
2‖x − x‖22

}

in the case of f . Existing algorithms [Palaniappan, Bach, 2016; Alkousa

et al., 2019; Alkousa et al., 2020; Lin, Jin, Jordan, 2020; Dvinskikh et al., 2020; Wang, Li, 2020; Yang
et al., 2020] for problem (1) with non-bilinear structure do not exploit the finite-sum structure of the
function h and when it is smooth require calculation of the gradient of the whole sum, which may
be expensive when mh � 1. Unlike them, we incorporate the variance reduction technique to make
the number of evaluations of ∇hi(y) smaller than by the existing methods. Unlike [Palaniappan, Bach,
2016; Lin, Jin, Jordan, 2020; Wang, Li, 2020; Yang et al., 2020], we separate the complexity estimates
for each part of the objective, i. e. we estimate separately a sufficient number of evaluations of ∇ f (x),
∇xG(x, y), ∇yG(x, y), ∇hi(y) to achieve a given accuracy. This allows us to call each oracle less number
of times than it is required by existing methods and is important since evaluation of each gradient can
have different arithmetic operations complexity, and it is desired to call expensive oracles less often
than cheap oracles. Compared to [Alkousa et al., 2019; Alkousa et al., 2020], where the complexities
are also separated, we obtain better complexity bounds for each part of the objective. Moreover, for the
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particular case when f = h = 0, our bounds are the same as the best known bounds [Wang, Li, 2020;
Yang et al., 2020] and are optimal up to logarithmic factors. Otherwise, when mh > 1 and/or f , h are
nonzero we obtain the best, to our knowledge, complexity bounds. We summarize comparison of ours
results and those reported elsewhere for the case mh > 1 in Table 1 and for the particular case mh = 1
in Table 2.

Table 1. Comparison of gradient complexities for problem (1) with mh > 1, i. e. the number of corresponding
gradient evaluations, to find an ε-saddle point with probability at least 1 − σ. Notation ˜O(X) hides constant
factors polylogarithmic in ε−1 and σ−1. For a function F, we denote κ(F)

x = LF/μx, κ
(F)
y = LF/μy. The results of

Theorem 6 are obtained under additional assumptions mh(4LG + μy) � Lh, 2LG + μx � L f , μy � LG, μx � LG

References Complexity
Variance
reduction

Complexity
separation

∇ f : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

∇xG : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

[Nesterov, Scrimali, 2011]

∇hi : ˜O
(

mhκ
( f+G)
x + mhκ

(G+h)
y

)

∇yG : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

✗ ✗

∇ f : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

∇xG : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

[Lin, Jin, Jordan, 2020; Wang, Li, 2020; Yang et al., 2020]

∇hi : ˜O

(

mh

√

κ
( f+G)
x κ(G+h)

y

)

∇yG : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

✗ ✗

∇ f : ˜O

(
√

κ
( f )
x

)

∇xG : ˜O

(

√

κ(G)
x κ(G)

y

)

[Alkousa et al., 2020]

∇hi : ˜O

(

mh

√

κ(G)
x κ(G)

y κ(h)
y

)

∇yG : ˜O

(

κ(G)
y

√

κ(G)
x

)

✗ ✓

∇ f : ˜O

(

√

κ
( f )
x κ(G)

y

)

∇xG : ˜O

(

√

κ(G)
x κ(G)

y

)

This paper
(Theorem 6)

∇hi : ˜O
(
√

mhκ
(G)
x κ(h)

y

)

∇yG : ˜O

(

√

κ(G)
x κ(G)

y

)

✓ ✓

The second problem formulation we are interested in is the strongly-convex-strongly-concave
saddle-point problem of the form

min
x∈Rdx

max
y∈Rdy
{ f (x) +G(x, y) − h(y)}, G(x, y) :=

1
mG

mG
∑

i=1

Gi(x, y), (2)

where each Gi(x, y) is convex in x and concave in y and is Li
G-smooth in each variable, f (x) is

μx-strongly convex, and h(y) is μy-strongly convex. In this setting it is natural to define condition

numbers κx =
LG
μx
and κy =

LG
μy
for the primal minimization and dual maximization problems,

respectively, where LG = 1
mG

mG
∑

i=1
Li

G. We consider this problem under three different additional

assumptions: a) f (x) is L f -smooth, h(y) is Lh-smooth; b) f (x) is L f -smooth, h(y) is smooth and prox-
friendly; c) f (x) and h(y) are both prox-friendly. Under assumption a) and b), similarly to [Lin, Jin,
Jordan, 2020; Wang, Li, 2020; Yang et al., 2020] we do not exploit the finite-sum structure of the
function G. Yet, unlike these papers and [Palaniappan, Bach, 2016], where variance reduction methods
are proposed, we separate the complexity bounds for the number of oracle calls for each part of
the objective, i. e. we estimate a sufficient number of evaluations of ∇ f (x), ∇xGi(x, y), ∇yGi(x, y),
∇h(y) to achieve a given accuracy. This allows us to call each oracle less number of times than it
is required by existing methods and is important since evaluation of each gradient can have different
arithmetic operations complexity, and it is desired to call expensive oracles less often than cheap

2023, Т. 15, № 2, С. 433–467



438 Y.D. Tominin, V. D. Tominin, E. D.Borodich, D.A.Kovalev, . . .

Table 2. Comparison of gradient complexities for problem (1) with mh = 1, i. e. the number of corresponding
gradient evaluations, to find an ε-saddle point for the problem. Notation ˜O(X) hides constant factors
polylogarithmic in ε−1. CS stands for complexity separation. For a function F, we denote κ(F)

x =
LF
μx
, κ(F)

y =

=
LF
μy

References Complexity Assumptions CS

∇ f : ˜Ω

(

√

κ
( f+G)
x κ(G+h)

y

)

∇xG : ˜Ω

(

√

κ
( f+G)
x κ(G+h)

y

)

Lower bounds
[Ibrahim et al., 2020]

∇hi : ˜Ω

(

√

κ
( f+G)
x κ(G+h)

y

)

∇yG : ˜Ω

(

√

κ
( f+G)
x κ(G+h)

y

)

f is L f -smooth,
h is Lh-smooth

✗

∇ f : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

∇xG : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

[Nesterov, Scrimali, 2011]

∇hi : ˜O
(

κ
( f+G)
x κ(G+h)

y

)

∇yG : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

f is L f -smooth,
h is Lh-smooth

✗

∇ f : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

∇xG : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

[Lin, Jin, Jordan, 2020;
Wang, Li, 2020; Yang et
al., 2020] ∇hi : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

∇yG : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

f is L f -smooth,
h is Lh-smooth

✗

∇ f : ˜O

(
√

κ
( f )
x

)

∇xG : ˜O

(

√

κ(G)
x κ(G)

y

)

[Alkousa et al., 2020]

∇hi : ˜O

(

√

κ(G)
x κ(G)

y κ(h)
y

)

∇yG : ˜O

(

κ(G)
y

√

κ(G)
x

)

f is L f -smooth,
h is Lh-smooth

✓

∇ f : ˜O

(

√

κ
( f )
x κ(G)

y

)

∇xG : ˜O

(

√

κ(G)
x κ(G)

y

)

This paper
(Corollary 4)

∇h : ˜O

(

max

{

√

κ(G)
x κ(h)

y ,

√

κ(G)
x κ(G)

y

})

∇yG : ˜O

(

√

κ(G)
x κ(G)

y

)

f is L f -smooth,
h is Lh-smooth

✓

∇ f : ˜O

(

√

κ
( f )
x κ(G)

y

)

∇xG : ˜O

(

√

κ(G)
x κ(G)

y

)

This paper
(Theorem 8)

∇h : ˜O

(

√

κ(G)
y

)

∇yG : ˜O

(

√

κ(G)
x κ(G)

y

)

f is L f -smooth,
h is Lh-smooth prox-friendly

✓

oracles. Compared to [Alkousa et al., 2019; Alkousa et al., 2020], where the complexities are also
separated, we obtain better complexity bounds for each part of the objective. Moreover, for the
particular case where f = h = 0, our bounds are the same as the best known bounds [Wang, Li,
2020; Yang et al., 2020].

We summarize the comparison of ours results and those reported elsewhere in Table 3.

Our approach

To solve the described saddle-point problems under different assumptions, we first propose
a general framework and then specialize it to problem (1) or problem (2). Our approach to saddle-point
problems is based on considering them as minimization problems with objective implicitly given as
a solution to a maximization problem. Thus, to develop our general framework, we first consider an
optimization problem of the form

min
x∈Rd
{F(x) := ϕ(x) + ψ(x)}, (3)
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Table 3. Comparison of gradient complexities for problem (2), i. e. the number of corresponding gradient
evaluations, to find an ε-saddle point with probability at least 1 − σ. Notation ˜O(X) hides constant factors
polylogarithmic in ε−1 and σ−1. For a function F, we denote κ(F)

x =
LF
μx
, κ(F)

y =
LF
μy
. Prox-f (Prox-h) stands

for f (h) being prox-friendly. CS stands for complexity separation. VR stands for variance reduction

Referenses Complexity Prox-f Prox-h VRCS

∇ f : ˜O
(

κ
( f+G)
x + κ(G+h)

y

)

∇xGi : ˜O
(

mGκ
( f+G)
x + mGκ

(G+h)
y

)

[Nesterov, Scrimali, 2011]

∇h : ˜O
(

κ
( f+G)
x + mhκ

(G+h)
y

)

∇yGi : ˜O
(

mGκ
( f+G)
x + mGκ

(G+h)
y

)

✗ ✗ ✗ ✗

∇ f : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

∇xGi : ˜O

(

mG

√

κ
( f+G)
x κ(G+h)

y

)

[Lin, Jin, Jordan, 2020]

∇h : ˜O

(

√

κ
( f+G)
x κ(G+h)

y

)

∇yGi : ˜O

(

mG

√

κ
( f+G)
x κ(G+h)

y

)

✗ ✗ ✗ ✗

∇ f : ˜O

(
√

κ
( f )
x

)

∇xGi : ˜O

(

mG

√

κ(G)
x κ(G)

y

)

[Alkousa et al., 2020]

∇h : ˜O

(

√

κ(G)
x κ(G)

y κ(h)
y

)

∇yGi :
˜O

(

mGκ
(G)
y

√

κ(G)
x

)

✗ ✗ ✗ ✓

∇ f : ˜O

(√mG

max
{

LG+Lf , LG+Lh

}

min{μx, μy}

)

∇xGi : ˜O

(√mG

max
{

LG+Lf , LG+Lh

}

min{μx, μy}

)

[Palaniappan, Bach, 2016;
Alacaoglu, Malitsky, 2021]

∇h : ˜O

(√mG

max
{

LG+Lf , LG+Lh

}

min{μx, μy}

)

∇yGi : ˜O

(√mG

max
{

LG+Lf , LG+Lh

}

min{μx, μy}

)

✗ ✗ ✓ ✗

∇ f : ˜O

(

√

κ
( f )
x κ(G)

y

)

∇xGi : ˜O

(

mG

√

κ(G)
x κ(G)

y

)

This paper
(Theorem 7)

∇h : ˜O

(

max

{

√

κ(G)
x κ(h)

y ,

√

κ(G)
x κ(G)

y

})

∇yGi : ˜O

(

mG

√

κ(G)
x κ(G)

y

)

✗ ✗ ✗ ✓

∇ f : ˜O

(

√

κ
( f )
x κ(G)

y

)

∇xGi : ˜O

(

mG

√

κ(G)
x κ(G)

y

)

This paper
(Theorem 8)

∇h : ˜O

(

√

κ(G)
y

)

∇yGi : ˜O

(

mG

√

κ(G)
x κ(G)

y

)

✗ ✓ ✗ ✓

∇ f : ˜Ω

(√mG

√

κ
( f+G)
x κ(G+h)

y

)

∇xGi :
˜Ω

(√mG

√

κ
( f+G)
x κ(G+h)

y

)

Lower bounds
[Han, Xie, Zhang, 2021]

∇h : ˜Ω

(√mG

√

κ
( f+G)
x κ(G+h)

y

)

∇yGi :
˜Ω

(√mG

√

κ
( f+G)
x κ(G+h)

y

)

✗ ✗ ✓ ✗

and develop a novel inexact accelerated gradient method (Algorithm 1) which uses inexact first-order
information on ϕ and ψ and inexact proximal steps. Then we note that the problems (1) or (2) can be
rewritten as

min
x∈Rdx
{F(x) := f (x) + max

y∈Rdy
{G(x, y) − h(y)}

︸��������������������︷︷��������������������︸

g(x)=G(x, y∗(x))−h(y∗(x))

}, (4)

which is consistent with the problem formulation (3). Using this representation, we can apply our
Algorithm 1 with ϕ(x) = f (x) and ψ(x) = g(x) to solve this problem. In each step we need to
obtain a first-order information about the function g, which we can do inexactly by solving the inner
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maximization problem by the same Algorithm 1, but now with ϕ(y) = −G(x, y) and ψ(y) = h(y). To
obtain near-optimal upper complexity bounds and separate oracle complexity for different parts of the
problem (4), we introduce additional inner-outer cycles, which will be described in detail below.

As stated above, our framework is based on the system of inner-outer loops, where in each
loop an accelerated gradient method is applied to obtain better complexity results. To implement
our approach we then need a flexible accelerated method which can be applied in a number of
different situations. In some sense we need an accelerated meta-algorithm, or an accelerated envelope,
which uses any method at the lower level to solve an auxiliary problem of the upper level and, as
a result, obtain an accelerated version of the method used at the lower level. Existing algorithms of
this type [Lin, Mairal, Harchaoui, 2015; Monteiro, Svaiter, 2013; d’Aspremont, Scieur, Taylor, 2021]
are based on the accelerated proximal point method that uses some algorithm at the lower level to
implement inexact proximal mapping. Unfortunately, we cannot use these existing methods in our case
since in our system of inner-outer loops a loop at the lower level leads to inexact gradient information
at the upper level. Moreover, if a randomized method is used at the lower level, one obtains stochastic
inexactness at the upper level. These kinds of inexactness of the oracles for ϕ, ψ are not accounted
for in the existing general acceleration frameworks [Lin, Mairal, Harchaoui, 2015; Monteiro, Svaiter,
2013; d’Aspremont, Scieur, Taylor, 2021]. Motivated by this gap in the literature, we develop a generic
accelerated meta-algorithm with probabilistic inexact oracles. Moreover, we also implement an adaptive
stopping criterion for the method at the lower level which guarantees an appropriate quality of the
inexact proximal mapping and leads to the accelerated convergence rate at the upper level.

Contributions

To sum up, our contributions are as follows. First, we provide a general inexact accelerated meta-
algorithm (AM) listed as Algorithm 1 for convex optimization problems of the form (3) with inexact
oracles. We also obtain an accelerated linearly convergent version of this algorithm by employing
the restart technique with the resulting algorithm listed as Algorithm 2. We provide a theoretical
analysis of this algorithm under stochastic inexactness in different parts of this algorithm, i. e. an
inexact oracle and inexact proximal step. Unlike existing accelerated proximal methods, we consider
composite problems (3) and use an inexact proximal step only with respect to ϕ. Next, we use this
AM to construct a new general framework to systematically obtain new algorithms and complexity
bounds for saddle-point problems with the structure (1) or (2). As a result, we obtain new accelerated
methods for general saddle-point problems, including accelerated variance reduction methods, which
leads to better complexity bounds than those existing in the literature. Moreover, our algorithms allow
separation of complexity bounds for the number of oracle calls for each part of the problem formulation,
i. e., for problem (1) we estimate a sufficient number of evaluations of ∇ f (x), ∇xG(x, y), ∇yG(x, y),
∇hi(y) to achieve a given accuracy. For problem (2) we estimate a sufficient number of evaluations
of ∇ f (x), ∇xGi(x, y), ∇yGi(x, y), ∇h(y) to achieve a given accuracy. This complexity separation is
important since evaluation of each gradient can have different arithmetic operations complexity, and it
is desired to call expensive oracles less often than cheap oracles.

Paper organization

In the section “Inexact Accelerated Meta-Algorithm”, we propose an Accelerated Meta-
Algorithm and extend it for a strongly convex setting with probabilistic inexact oracle and probabilistic
inexactness in the proximal step. Then, in the section “Accelerated Framework for Saddle-Point
Problems”, by sequentially applying the Accelerated Meta-Algorithm, we obtain a general framework
for solving saddle-point problems. This framework is based on two main assumptions for the possibility
of solving two optimization problems. In the section “Accelerated Method for Saddle-Point Problems”
we specialize the general framework to solve problem (1) by showing how to satisfy its two main
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assumptions, and providing the resulting algorithm. Finally, in the section “Accelerated Methods
for Saddle-Point Problems with Finite-Sum Structure” we consider problem (2) under additional
assumptions: a) f (x) is L f -smooth, h(y) is Lh-smooth; b) f (x) is L f -smooth, h(y) is smooth and prox-
friendly. We specialize the general framework for this setting and propose accelerated algorithms.

Notation and definitions

We introduce some notation and necessary definitions used throughout the paper. We denote
by ‖x‖ and ‖y‖ the standard Euclidean norms for x ∈ Rdx and y ∈ Rdy , respectively. This leads to the
Euclidean norm on Rdx × Rdy defined as ‖(x1, x2) − (y1, y2)‖2 = ‖x1 − x2‖2 + ‖y1 − y2‖2, x1, x2 ∈ Rdx ,
y1, y2 ∈ Rdy .

We say that a function f is L f -smooth if its gradient is Lipshitz-continuous, i. e.,

‖∇ f (x1) − ∇ f (x2)‖ � L f ‖x1 − x2‖, x1, x2 ∈ dom f (5)

for some L f > 0. We say that a function f is μ f -strongly convex if, for some μ f > 0 and for any its
subgradient, it holds that

f (x2) � f (x1) + 〈∇ f (x1), x2 − x1〉 +
μ f

2
‖x1 − x2‖2, x1, x2 ∈ dom f . (6)

We say that a pair (ϕδ,L,μ(x), ∇ϕδ,L,μ(x)) is called (δ, L, μ)-oracle of a convex function ϕ at
a point x if

μ

2
‖z − x‖2 − δ1 � ϕ(z) − (ϕδ,L,μ(x) + 〈∇ϕδ,L,μ(x), z − x〉) � L

2
‖z − x‖2 + δ2 for all z ∈ Rdx , (7)

where δ = (δ1, δ2) and δ1, δ2 > 0. We use the notation (δ, L)-oracle if (δ1, δ2) = (0, δ).
We say that a function f is prox-friendly if it admits a tractable proximal operator [Moreau,

1965]. This means that the evaluation of the point

proxλf (x) = argmin
x∈dom f

{

λ f (x) +
1
2
‖x − x‖2

}

(8)

for some fixed x ∈ Rdx , λ > 0 can be made either in closed form or numerically very efficiently up to
machine precision.

For an optimization problem min
x

f (x), we say that a random point x̂ is an (ε, σ)-solution to this

problem for some ε > 0 and σ ∈ (0, 1) if

f (x̂) −min
x

f (x) � ε with probability at least 1 − σ. (9)

We refer to ε as accuracy and to σ as confidence level.
We say that a function G(x, y) is (strongly)-convex-(strongly)-concave if the function G(·, y) is

(strongly)-convex for any fixed y and the function G(x, ·) is (strongly)-concave for any fixed x. For
a strongly-convex-strongly-concave saddle-point problem min

x
max

y
G(x, y) a point (x̂, ŷ) is called an

(ε, σ)-solution for some ε > 0 and σ ∈ (0, 1) if

max
y

G(x̂, y) −min
x

G(x, ŷ) � ε with probability at least 1 − σ. (10)

Note that since the saddle-point problem is strongly-convex-strongly-concave, the quantity in the l.h.s.
of (10) is correctly defined.
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Notation ˜O(·) hides constant factors polylogarithmic in ε−1 and σ−1. More precisely, ψ1(ε, σ) =
= ˜O(ψ2(ε, σ)) if there exist constants C > 0, a, b such that, for all ε > 0, σ ∈ (0, 1), ψ1(ε, σ) �
� Cψ2(ε, σ) lna 1

ε lnb 1
σ . We use O(·)-notation when a = b = 0. For a function ξ(ε) where ε ∈ R+ we

write ξ(ε) = poly(ε) if ξ(·) = ˜O( f (ε)), where f (ε) is a polynomial function of ε with nonnegative,
possibly fractional powers. For a function ξ(ε, σ), where ε, σ ∈ R+ we write ξ(ε, σ) = poly(ε, σ)
if ξ(·, σ) is a polynomial function of ε and ξ(ε, ·) is a polynomial function of σ.

Inexact Accelerated Meta-algorithm

As described above, our approach is based on an accelerated composite optimization method. In
this section we describe this method in an inexact oracle model to apply it to saddle-point problems.
In this section we focus on the following optimization problem:

min
x∈Rdx
{F(x) := ϕ(x) + ψ(x)} (11)

under the following assumption.

To motivate the study of this section, we slightly rewrite problem (1) in the following way:

min
x∈Rdx
{F(x) := ϕ(x) + max

y∈Rdy
{G(x, y) − h(y)}

︸��������������������︷︷��������������������︸

ψ(x):=G(x, y∗(x))−h(y∗(x))

}, (12)

where y∗(x) is the solution to the problem defining ψ(x) for a fixed x. In other words, we can represent
problem (1) as an optimization problem min

x∈Rdx
ϕ(x) + ψ(x) with a particular choice of ϕ, ψ:

ϕ = f (x), ψ = max
y∈Rdy
{G(x, y) − h(y)}. (13)

Importantly, we have no access to the exact gradients of ψ(x) since we cannot solve exactly the
problem defining ψ(x). At the same time, according to Lemma 2 from [Alkousa et al., 2020], we can
get (a precise definition is given below) an inexact (δ, 2Lψ) oracle, where δ depends on the accuracy
of the solution of the problem max

y∈Rdy
{G(x, y) − h(y)}. Thus, we need to develop an accelerated algorithm

for problem (12) which takes into account the inaccuracy of the oracles for functions ϕ(x), ψ(x) caused
by the inexact solution to the optimization problem defining ψ(x).

The situation is even more complicated if we consider problem (1) with mh > 1 or
problem (2) with mG > 1 and apply variance reduction techniques. Application of known variance
reduction methods guarantees us a solution to the problem max

y∈Rdy
{G(x, y) − h(y)} only with some high

probability 1 − σ. Thus, when using the variance reduction setting we obtain an inexact oracle for ψ(x)
only with some probability.

To sum up the motivation part, we need to develop a generic acceleration scheme which works
with inexact oracles including inexact oracles with high probability. The rest of this section is devoted
to the precise definitions of inexact oracles, description of such an accelerated algorithm and stating
its convergence properties. Main technical proofs are deferred to the appendices. Since we believe that
the proposed accelerated algorithm with inexact oracles can be of independent interest, we spend some
effort to establish more results than we need for the main purpose of this paper. So, first we consider
optimization with deterministic oracle, and then move to the setting of probabilistic inexact oracles.
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Deterministic setting

Having in mind the above motivation, we introduce necessary notation and definitions. We start
with a definition which corresponds to convex functions with Lipschitz-continuous gradient and is
a small generalization of inexact oracle introduced in [Devolder, Glineur, Nesterov, 2014].

Definition 1. Let δ = (δ1, δ2), where δ1, δ2 > 0. Then the pair (ϕδ,L(x), ∇ϕδ,L(x)) is called
(δ, L)-oracle of a convex function ϕ(x) at a point x, if

−δ1 � ϕ(z) − (ϕδ,L(x) + 〈∇ϕδ,L(x), z − x〉) � L
2
‖z − x‖2 + δ2 for all z ∈ Rdx . (14)

With a slight abuse of notation, we use the same notation (δ, L)-oracle for the case (δ1, δ2) = (0, δ).

Our Accelerated Meta-algorithm (AM) is listed below as Algorithm 1. The method generates
three sequences, which are denoted by the same letter x with either no superscript or one of the
two superscripts xt, xmd. Since later we will use this algorithm in a system of inner-outer loops, we
will change the letter to denote the sequences, but will not change the superscripts. The idea of the
algorithm is inspired by the Monteiro – Svaiter algorithm [Monteiro, Svaiter, 2013], but there are several
important differences. The first one is that in (15) we linearize the function ϕ instead of making an
inexact proximal step for the whole objective F as it is done in [Monteiro, Svaiter, 2013]. The second
difference is that we use inexact oracles for the functions ϕ and ψ, and as a corollary inexact oracle
for F. This affects the measure of inexact solution to problem (15) and Step 7 of the algorithm. Thirdly,
below we introduce a method more convenient in practice to control the accuracy of the solution to
the inexact proximal step (15). To do that, we quantify with which accuracy one needs to solve the
problem (15) in terms of its objective residual, so that the whole Algorithm 1 outputs a solution to the
problem (11) with a desired accuracy. This makes it easy to apply Algorithm 1 in a system of inner-
outer loops. Finally, the algorithm in [Monteiro, Svaiter, 2013] is not proved to obtain accelerated linear
convergence rate in the case where the objective is strongly convex. For our algorithm we propose an
extension which has an accelerated linear convergence rate under the additional assumption of inexact
strong convexity.

The next theorem gives the convergence rate of Algorithm 1 when applied to the problem (11).

Theorem 1. Assume that the starting point x0 of Algorithm 1 satisfies ‖x0 − x∗‖ � R for
some R > 0, and that the parameter H is chosen to satisfy H � 2Lϕ. Assume also that the algorithm
uses the (δ, Lϕ)-oracle of convex function ϕ(x) and (δ, Lψ)-oracle of convex function ψ(x), and that the
auxiliary subproblem (15) is solved inexactly in each iteration in such a way that inequality (16) holds.
Then, for all k � 0, the sequence xt

k generated by Algorithm 1 satisfies

F
(

xt
k

)

− F(x∗) �
4HR2

k2
+ 2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k
∑

i=1

Ai

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

δ2

Ak

+ δ1 +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k−1
∑

i=1

Ai

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

δ1

Ak

. (17)

We prove this theorem in the Appendix.
We now move further to the strongly-convex setting, which will allow us to solve strongly-

convex-strongly-concave saddle-point problems in later sections. The next definition is an extension
of Definition (1) and [Devolder, 2013] corresponding to strongly convex functions with Lipschitz-
continuous gradient.

It is straightforward that a (δ, L, μ)-oracle is also a (δ, L)-oracle, and, thus, we can use
(δ, L, μ)-oracle in Algorithm 1.

Next, we consider the case where F(x) in (11) is convex and admits a (δ, L, μ)-oracle. Then,
we use the convergence rate result in Theorem 1 and obtain a linear convergence rate by applying
the restart technique. The restarted algorithm is listed as Algorithm 2, and its convergence rate when
applied to the problem (11) is given in Theorem 2.
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Algorithm 1. Accelerated Meta-algorithm (AM) with inexact (δ, L)-oracles

1: Input: objective F = ϕ+ψ where ϕ, ψ are convex, parameter H � 2Lϕ, inexactness δ � 0, starting

point x0;
(

ϕδ,Lϕ, ∇ϕδ,Lϕ
)

— (δ, Lϕ)-oracle of ϕ,
(

ψδ,Lψ
, ∇ψδ,Lψ

)

— (δ, Lψ)-oracle of ψ.

2: Set A0 = 0, xt
0 = x0, xmd

0 = x0.
3: for k = 0 to k = K − 1 do

4: Set ak+1 =
1+
√

1+8HAk
4H , Ak+1 = Ak + ak+1.

5: Set xmd
k =

Ak
Ak+1

xt
k +

ak+1
Ak+1

xk.

6: Find xt
k+1 as an approximate solution to the minimization problem

xt
k+1 ≈ argmin

z∈Rdx

{

ϕδ,Lϕ

(

xmd
k

)

+
〈

∇ϕδ,Lϕ
(

xmd
k

)

, z − xmd
k

〉

+ ψ(x) +
H
2

∥

∥

∥z − xmd
k

∥

∥

∥

2
}

, (15)

such that
∥

∥

∥

∥

∇ϕδ,Lϕ
(

xmd
k

)

+ ∇ψδ,Lψ
(

xt
k+1

)

+ H
(

xt
k+1 − xmd

k

)

∥

∥

∥

∥

�
H
4

∥

∥

∥xt
k+1 − xmd

k

∥

∥

∥ − 2
√

2δ2Lϕ. (16)

7: xk+1 = xk − ak+1∇ϕδ,L
(

xt
k+1

)

− ak+1∇ψδ,L
(

xt
k+1

)

.
8: end for
9: return xt

K

Algorithm 2. Restarted AM (R-AM)

1: Input: objective F = ϕ+ψ admits (δ, L, μ)-oracle, parameter H � 2Lϕ, inexactness δ � 0, starting

point z0;
(

ϕδ,Lϕ, ∇ϕδ,Lϕ
)

— (δ, Lϕ)-oracle of convex function ϕ,
(

ψδ,Lψ
, ∇ψδ,Lψ

)

— (δ, Lψ)-oracle of

convex function ψ.
2: for k = 0, to K do
3: Set

Nk = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

(

128H
μ

)1/2⎤
⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

, 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (18)

4: Set zk+1 := xt
Nk
as the output of Algorithm 1 started from zk and run for Nk steps.

5: end for
6: return zK

Theorem 2. Assume that the starting point z0 of Algorithm 2 satisfies ‖z0 − x∗‖ � R for
some R > 0, and that the parameter H is chosen to satisfy H � 2Lϕ. Further, assume that (δ, L, μ)-oracle
of F(x), (δ, Lϕ)-oracle of convex function ϕ(x), (δ, Lψ)-oracle of convex function ψ(x) are available,
and, in each iteration of Algorithm 1 which is used as a building block of Algorithm 2, the auxiliary
subproblem (15) is solved inexactly in such a way that inequality (16) holds. Finally, assume that the
oracle inexactness δ1, δ2 is chosen to satisfy

∀k : δ1 + δ2 + 2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k
∑

i=1

Ai

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

δ2

Ak

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k−1
∑

i=1

Ai

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

δ1

Ak

�
ε

2
, (19)

4
√

2δ2L

μ
�
ε

2
, (20)
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where ε is the desired accuracy of the solution to problem (11). Then, under the listed assumptions,

Algorithm 2 with K = 2 log2
μR2

0
4ε guarantees that its output point zK is an ε-solution to problem (11),

i. e. F(zK) − F (x∗) � ε. Moreover, the total number NF of calls to inexact oracles both for ϕ and for ψ
satisfies the following inequality:

NF �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

16
√

2

√

H
μ
+ 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

log2

μR2
0

ε
= ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

H
μ
, 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (21)

We prove this theorem in the Appendix.
As we see from the above theorems, to ensure that AM and R-AM algorithms provide an

ε-solution to problem (11), we need to guarantee that the oracle error δ = (δ1, δ2) is sufficiently small
and that the auxiliary problem (15) is solved inexactly in such a way that inequality (16) is satisfied.
For our purposes it is more convenient to consider the inexact solution of the problem (15) not in
terms of inequality (16), but rather in terms of the objective residual in this problem bounded by
some tolerance ε̃ f . Next, we provide sufficient conditions on the values of δ and ε̃ f which guarantee
that the conditions of the above theorems hold and that R-AM is guaranteed to find an ε-solution to
problem (11).

Theorem 3. Assume that the starting point z0 of Algorithm 2 applied to problem (11)
satisfies ‖z0 − x∗‖ � R for some R > 0, and that the parameter H is chosen to satisfy H � 2Lϕ.
Further, assume that F(x) is convex, (δ, L, μ)-oracle of F(x), (δ, Lϕ)-oracle of convex function ϕ(x),
(δ, Lψ)-oracle of convex function ψ(x) are available, and, in each iteration of Algorithm 1 which is
used as a building block of Algorithm 2, the auxiliary subproblem (15) is solved inexactly in such
a way that the inexact solution xt

k+1 satisfies

(

〈

∇ϕδ,Lϕ
(

xmd
k

)

, xt
k+1 − xmd

k

〉

+ ψ
(

xt
k+1

)

+
H
2

∥

∥

∥xt
k+1 − xmd

k

∥

∥

∥

2
)

−

− min
z∈Rdx

(

〈

∇ϕδ,Lϕ
(

xmd
k

)

, z − xmd
k

〉

+ ψ(x) +
H
2

∥

∥

∥z − xmd
k

∥

∥

∥

2
)

� ε̃ f , (22)

where

ε̃ f �
εμ2

8642(L + H)2
. (23)

Finally, assume that the oracle errors δ1 and δ2 satisfy

δ1, δ2 � min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

εμ

8642Lϕ
,

εμ

8642Lψ
,

εμ2

8642(L + H)2
,

ε3/2

5
√

8HR2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (24)

Then, under the listed assumptions, Algorithm 2 with K = 2 log2
μR2

0
4ε guarantees that its output

point zK is an ε-solution to problem (11), i. e. F(zK) − F (x∗) � ε. Moreover, the total number NF of
calls to inexact oracles both for ϕ and for ψ satisfies the following inequality:

NF �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

16
√

2

√

H
μ
+ 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

log2

μR2
0

ε
= ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

H
μ
, 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (25)

We prove this theorem in the Appendix.
An important feature of the above bounds on δ1, δ2 and ε̃ f is that they depend polynomially

on the target accuracy ε. This means that, if we can control these errors by some algorithms which
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have complexity logarithmically depending on δ1, δ2 and ε̃ f , then the total complexity of the whole
algorithm R-AM will be logarithmic in the target accuracy ε, which makes it reasonable to apply this
algorithm in a system of inner-outer loops. In the next subsection we extend the above theory for
a stochastic setting.

Stochastic setting

As discussed at the beginning of this section, we would like to apply stochastic variance
reduction methods or other randomized methods in order to provide an inexact solution to the auxiliary
problem (15) and in order to obtain inexact oracle for F. In the former case inequality (22) can be
guaranteed only with some probability. To illustrate the latter case, we consider function ψ in (13)
with h given in (1) with mh � 1, i. e.

ψ = max
y∈Rdy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

G(x, y) − 1
mh

mh
∑

i=1

hi(y)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (26)

According to Lemma 2 from [Alkousa et al., 2020], we can get an inexact (δ, 2Lψ)-oracle, where δ
depends on the accuracy of the solution of this maximization problem. If we solve this maximization
problem by a randomized method, we can obtain inexact (δ, 2Lψ)-oracle only with some probability.
Thus, below we give a formal generalization of the results obtained in the previous subsection to
a stochastic setting. We start with the definition of probabilistic inexact oracle.

Definition 2. Let δ = (δ1, δ2), where δ1, δ2 > 0. Then the pair (ϕδ,L,μ(x), ∇ϕδ,L,μ(x)) is called
(δ, σ0, L, μ)-oracle of a convex function ϕ at a point x if

μ

2
‖z−x‖2−δ1 � ϕ(z)−

(

ϕδ,L,μ(x) +
〈

∇ϕδ,L,μ(x), z − x
〉)

�
L
2
‖z−x‖2+δ2, for all ∈ Rdx w.p. 1−σ0. (27)

In the case of μ = 0, we say that (ϕδ,L(x), ∇ϕδ,L(x)) is called (δ, σ0, L)-oracle of a function ϕ at
a point x. With a slight abuse of notation, we use the same notation (δ, σ0, L, μ)-oracle for the
case (δ1, δ2) = (0, δ).

One should distinguish the following notation: the (δ, σ0, L)-oracle of a function ϕ and
(δ, L, μ)-oracle of a function ϕ.

The following is a simple lemma, which states that such a defined inexact oracle is additive.

Lemma 1. Let the following assumptions hold.

1.
(

ϕδϕ,Lϕ,μϕ(x), ∇ϕδϕ,Lϕ,μϕ(x)
)

is (δϕ, σϕ, Lϕ, μϕ)-oracle for a convex function ϕ,

2.
(

ψδψ,Lψ,μψ
(x), ∇ψδψ,Lψ,μψ(x)

)

is (δψ, σψ, Lψ, μψ)-oracle for a convex function ψ.

Then
(

ϕδϕ,Lϕ,μϕ(x) + ψδψ,Lψ,μψ
(x), ∇ϕδϕ,Lϕ,μϕ(x) + ∇ψδψ,Lψ,μψ(x)

)

is (δϕ + δψ, σϕ + σψ, Lϕ + Lψ, μϕ + μψ)-

oracle for ϕ + ψ.

We provide the proof of this lemma in the Appendix.
To illustrate why such an inexact oracle appears to be useful in the setting of saddle-point

problems, we provide the following lemma, which extends the results of [Alkousa et al., 2019; Hien,
Zhao, Haskell, 2020] to our stochastic setting and which will be very important for the derivations in
the next section. This lemma contains some novelty in comparison with the literature: it is proved in
the stochastic setting.
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Lemma 2. Let us consider the function

g(x) = max
y∈Rdy
{̂S (x, y) = F(x, y) − w(y)}, (28)

where F(x, y) is convex in x, concave in y and is LF-smooth as a function of (x, y), w(y) is μy-strongly

convex. Then g(x) is Lg-smooth with Lg = LF +
2L2

F
μy

and y∗(·) is
2LF
μy

Lipschitz continuous, where the

point y∗ is defined as
y∗(x) := argmax

y∈Rdy

̂S (x, y) ∀x ∈ Rdx . (29)

Moreover, if a point ỹδ/2(x) is a
(

δ
2 , σ

)

-solution to (28), i. e. satisfies the inequality

max
y∈Rdy
{̂S (x, y)} − ̂S (x, ỹδ/2(x)) �

δ

2
w.p. 1 − σ, (30)

then ∇xF(x, ỹ
δ/2(x)) is (δ, σ, 2Lg)-oracle of g.

We prove this lemma in the Appendix.
Armed with Definition 2, we can now formulate the following theorem, which is a generalization

of Theorem 3, and which is the main result of this section. This theorem provides the iteration
complexity of Algorithm 2 to obtain an (ε, σ)-solution of problem (11) in the stochastic setting under
the assumptions of probabilistic inexact oracles for ϕ, ψ in the sense of Definition 2 and also under the
assumption that the auxiliary problem (15), which needs to be solved many times in each iteration of
Algorithm 2, is solved inexactly with accuracy controlled in a probabilistic sense.

Theorem 4. Consider the optimization problem (11)

min
x∈Rdx

F(x) = ϕ(x) + ψ(x),

where F(x) is convex. Let the target accuracy ε > 0 and the target confidence level σ ∈ (0, 1) be given.
Let also be given H � 2Lϕ, a starting point z0 and a number R0 > 0 such that ‖z0 − x∗‖ � R0, where x∗
is the solution to (11). Let the following two main assumptions of this theorem hold.

1. (Inexact oracle.) Inexact (δ, σ0, L, μ)-oracle of F(x), (δ, σ0, Lϕ)-oracle of convex function ϕ(x),
(δ, σ0, Lψ)-oracle of convex function ψ(x) are available, where δ1(ε), δ2(ε) satisfy the following
polynomial dependence on ε:

δ1(ε), δ2(ε) � min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

εμ

8642Lϕ
,

εμ

8642Lψ
,

εμ2

8642(L + H)2
,

ε3/2

5
√

8HR2
0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, (31)

and σ0(ε, σ) satisfies the following polynomial dependence on ε and σ:

σ0(ε, σ) �
σ

2
(

16
√

2
√

H
μ + 2

)

log2
μR2

0
ε

. (32)

2. (Inexact solution of the auxiliary problem (15).) Algorithm 2 is applied to solve problem (11)
and, in each iteration of Algorithm 1 used as a building block in Algorithm 2, an (̃ε f , σ̃)-solution
to the auxiliary problem (15) is available, i. e., with probability at least 1 − σ̃
(

〈

∇ϕδ,Lϕ
(

xmd
k

)

, xt
k+1 − xmd

k

〉

+ ψ
(

xt
k+1

)

+
H
2

∥

∥

∥xt
k+1 − xmd

k

∥

∥

∥

2
)

−

− min
z∈Rdx

(

〈

∇ϕδ,Lϕ
(

xmd
k

)

, z − xmd
k

〉

+ ψ(x) +
H
2

∥

∥

∥z − xmd
k

∥

∥

∥

2
)

� ε̃ f , (33)
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where ε̃ f (ε) and σ̃(ε, σ) satisfy the following polynomial dependences on ε and σ

ε̃ f (ε) �
εμ2

8642(L + H)2
, (34)

σ̃(ε, σ) �
σ

2
(

16
√

2
√

H
μ + 2

)

log2
μR2

0
ε

. (35)

Then, under the listed assumptions, Algorithm 2 with K = 2 log2
μR2

0
4ε guarantees that its output point zK

is an (ε, σ)-solution to problem (11). Moreover, the number NF of the calls to inexact oracle both for ϕ
and for ψ satisfies the following inequality:

NF �

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

16
√

2

√

H
μ
+ 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

log2

μR2
0

ε
= ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

H
μ
, 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (36)

and the number of times the auxiliary problem (15) is solved is also equal to NF .

We prove this theorem in the Appendix.

REMARK 1. We state the above theorem in the full generality. In the next sections we use its particular
version with δ1 = 0.

Accelerated Framework for Saddle-Point Problems

In this section we consider the saddle-point problem with composite structure

min
x∈Rdx

max
y∈Rdy
{ f (x) +G(x, y) − h(y)}. (37)

We describe a general accelerated framework for this problem in order to use it to develop accelerated
methods for saddle-point problems (1) and (2). As previously discussed, our general framework consists
of several loops, which require us to solve optimization problems with some special structure. Thus, the
general framework in this section is developed under two additional assumptions on two problems with
a special structure (see Conditions 2, 3 below), which we need to solve in two loops of the framework.
Then, in the following paragraphs we show, how these assumptions can be satisfied, which allows us to
obtain the main results as a corollary of the main theorem of this section. In this section we introduce
the main assumptions on the problem (37) and two additional assumptions for applying the framework.
Next, we discuss the structure of the problem (37) and slightly reformulate it in an equivalent way.
Then, we describe the main part of the framework by giving details of each loop, and finish with the
main complexity theorem.

Preliminaries

We start with the main conditions that are used in the general framework. These are conditions
on the functions f , G, h in the problem (37).

Condition 1.

1. Function f is L f -smooth, μx-strongly convex and there exists a basic oracle O f for f such
that τ f calls of this basic oracle produce the gradient ∇ f (x).
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2. Function G(x, y) is LG-smooth, i. e. for each x = (x1, x2), y = (y1, y2) ∈ Rdx × Rdy

‖∇G(x1, x2) − ∇G(y1, y2)‖ � LG‖(x1, x2) − (y1, y2)‖, (38)

there exists a basic oracle Ox
G for G(·, y) such that τG calls of this basic oracle produce the

gradient ∇xG(x, y) and a basic oracle Oy
G for G(x, ·) such that τG calls of this basic oracle

produce the gradient ∇yG(x, y).

3. Function h is Lh-smooth, μy-strongly convex and there exists a basic oracle Oh for h such
that τh calls of this basic oracle produce the gradient ∇h(y).

We will apply this general framework to solve, in particular, problem (1). This problem
formulation is not symmetric w.r.t. the variables x and y since different assumptions are imposed on
function f and function h. Our preliminary derivations, which we do not report here, have shown that
better complexity bounds are obtained if we change the order of maximization in y and minimization
in x in the problem (37) and write the following equivalent problem:

min
y∈Rdy

{

h(y) + max
x∈Rdx

{−G(x, y) − f (x)}
}

. (39)

This reformulation allows us to solve problem (39) by an algorithm which consists of a series of inner-
outer loops, where in each loop Algorithm 2 is applied to solve some auxiliary problem which has the
form (11). The above equivalent reformulation of (37) naturally leads to the following lemma about
approximate solutions.

Lemma 3. Assume that Condition 1 for the problem (37) holds. Let an approximate
solution (x̂, ŷ) for (39) satisfy

1. ŷ is an (εy, σy)-solution to the outer problem in (39), i. e. (9) holds;

2. x̂ is an (εx, σx)-solution to the inner problem max
x∈Rdx
{−G(x, ŷ) − f (x)}.

Then, the following inequalities hold with probability at least 1 − σy − σx:

‖̂y − y�‖2 �
2εy

μy
, (40)

‖x̂ − x∗‖2 � 8

(

LG

μx

)2

‖̂y − y∗‖2 +
4εx

μx
, (41)

max
x∈Rdx

min
y∈Rdy
{h(y) −G(x, y) − f (x)} − min

y∈Rdy
{h(y) −G(x̂, y) − f (x̂)} �

� 2

⎛

⎜

⎜

⎜

⎜

⎝

L f + LG +
2L2

G

μy

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

εx

μx
+

(

LG

μx

)2 4εy

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (42)

where (x∗, y∗) is the saddle point for problem (37).

By swapping the variables x and y we can get a useful corollary that we will use later.

Corollary 1. Assume that in the problem

min
x∈Rdx

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (x) + max
y∈Rdy
{F(x, y) − w(y)}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(43)

the functions f , F, w are L f , LF , Lw — smooth and the functions f , w are μx, μy-strongly convex,
respectively. Let an approximate solution (x̂, ŷ) for (43) satisfy

2023, Т. 15, № 2, С. 433–467



450 Y.D. Tominin, V. D. Tominin, E. D.Borodich, D.A.Kovalev, . . .

1. x̂ is an (εx, σx)-solution to the outer problem (43), i. e. inequality (9) holds;

2. ŷ is an (εy, σy)-solution to the inner problem max
y∈Rdy
{F(x̂, y) − w(y)}.

Then, the following inequalities hold with probability at least 1 − σy − σx:

‖x̂ − x�‖2 �
2εx

μx
, (44)

‖̂y − y∗‖2 � 8

(

LF

μy

)2

‖x̂ − x∗‖2 +
4εy

μy
, (45)

w(̂y) + max
x∈Rdx
{−F(x, ŷ) − f (x)} − min

y∈Rdy
max
x∈Rdx
{w(y) − F(x, y) − f (x)} = (46)

= max
y∈Rdy

min
x∈Rdx
{ f (x) + F(x, y) − w(y)} − min

x∈Rdx
{ f (x) + F(x, ŷ) − w(̂y)} � (47)

� 2

⎛

⎜

⎜

⎜

⎜

⎝

Lw + LF +
2L2

F

μx

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

εy

μy
+ 4

(

LF

μy

)2 εx

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (48)

where (x∗, y∗) is the saddle point for problem (43).

The next two assumptions are made to obtain a general framework. In this section we assume
that two functions defined via auxiliary maximization problems and arising in loops of our general
framework can be provided with an inexact oracle. In the following sections we show how to satisfy
these two conditions and apply the general framework.

Condition 2. Let ε > 0 and σ ∈ (0, 1), and a function g be defined as

g(x) = max
y∈Rdy

{

G(x, y) − h(y) − H
2
‖y − y0‖2

}

, (49)

where G(x, y), h(y) satisfy Condition 1, H > 0, and y0 is some fixed point in Rdy .
Then, we assume that, for any δ(ε) = poly(ε) and any σ0(ε, σ) = poly(ε, σ), it is possible

to evaluate a
(

δ(ε)
2 , σ0(ε, σ)

)

-solution to this problem and
(

δ(ε), σ0(ε, σ), 2LG + 4
L2

G
μy+H

)

-oracle for

the function g. Moreover, we assume that this solution can be evaluated using Ny
G(τG, H)Ky

G(ε, σ)
calls of the basic oracle Oy

G of G(x, ·), Nh(τh, H)Kh(ε, σ) calls of the basic oracle Oh of h and this
inexact oracle can be evaluated using Ny

G(τG, H)Ky
G(ε, σ) calls of the basic oracle Oy

G of G(x, ·),
τG calls of the basic oracle Ox

G of G(·, y) and Nh(τh, H)Kh(ε, σ) calls of the basic oracle Oh of h,

where Ky
G(ε, σ) = ˜O(1) and Kh(ε, σ) = ˜O(1).

Condition 3. Let ε > 0 and σ ∈ (0, 1), and a function r be defined as

r(y) = min
x∈Rdx
{G(x, y) + f (x)}, (50)

where G(x, y), f (x) satisfy Condition 1.
Then, we assume that, for any δ(ε) = poly(ε) and any σ0(ε, σ) = poly(ε, σ), it is possible

to evaluate a
(

δ(ε)
2 , σ0(ε, σ)

)

-solution to this problem and
(

δ(ε), σ0(ε, σ), 2LG + 4
L2

G
μx

)

-oracle for the

function r in the sense of Definition 2 with δ1 = 0. Moreover, we assume that this solution can be
evaluated using N x

G(τG)K x
G(ε, σ) calls of the basic oracle Ox

G for G(·, y), N f (τ f )K f (ε, σ) calls of the

basic oracle O f for f and this inexact oracle can be evaluated using τG calls of the basic oracle Oy
G

of G(x, ·), N x
G(τG)K x

G(ε, σ) calls of the basic oracle Ox
G for G(·, y) and N f (τ f )K f (ε, σ) calls of the

basic oracle O f for f , where K x
G(ε, σ) = ˜O(1) and K f (ε, σ) = ˜O(1).

Let us shortly illustrate how this can be achieved by a simple example.
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EXAMPLE 1. Assume, for simplicity, that in (49) h = 0 and the full gradients ∇xG(x, y),
∇yG(x, y) are available, meaning that in Condition 1 τG = 1. Then, the objective in the maximization
problem (49) has LG-smooth in y part G(x, y) and H-strongly concave part −H

2 ‖y − y0‖2. Thus, if
we apply the accelerated gradient method for composite optimization [Nesterov, 2013], we find that

a δ(ε)
2 -solution ỹδ(ε)/2(x) to this problem can be obtained in O

(
√

LG
H ln 1

δ(ε)

)

iterations of the accelerated

method. Each iteration requires us to evaluate ∇yG(x, y), which means that the number of calls of

the basic oracle Oy
G for G(x, ·) is O

(

τG

√

LG
H ln 1

δ(ε)

)

. Since δ(ε) = poly(ε), we find that the number

of Oy
G calls is Ny

G(τG , H)Ky
G(ε, σ) = O

(

τG

√

LG
H ln 1

ε

)

, i. e. Ky
G(ε, σ) = ˜O(1). Moreover, by Lemma 2,

∇xG
(

x, ỹδ(ε)/2(x)
)

is
(

δ(ε), 2LG +
2L2

G
H

)

-oracle for the function g, which means that we need also τG

calls of the basic oracle Ox
G for G(·, y). Thus, Condition 2 holds.

General framework for saddle-point problems

Next, we describe in detail the resulting structure of our framework which consists of three inner-
outer loops. We also summarize the steps of the algorithm in Table 4. In each loop we apply Algorithm 2
with different value of parameter H, which defines its complexity. In the next subsection we carefully
choose the value of this parameter at each level of the loops. Later, in the next sections this allows us
to obtain the desired results on near-optimal complexity bounds for saddle-point problems (1) or (2).
Further, in each loop we have a target accuracy ε and a confidence level σ which define the required
quality of the solution to an optimization problem in this loop. These quantities define the inexactness
of the oracle in this loop via inequalities (31) and (32) and the target accuracy and confidence level for
the optimization problem in the next loop via (34), (35). Due to inexact strong convexity provided by
(δ, σ, L, μ)-oracle, Algorithm 2 has logarithmic dependence of the complexity on the target accuracy
and confidence level (see Theorem 4). Since the dependences on the target accuracy and confidence
level in (31), (32), (34) and (35) are polynomial, we find that the dependence of the complexity in each
loop on the target accuracy and confidence level in the first loop, i. e. target accuracy and confidence
level for the solution to problem (37), is logarithmic.

Loop 1

The goal of this loop is to find an (ε, σ)-solution of problem (39). This problem is reformulated
as a minimization problem in y with the objective given in the form of an auxiliary maximization
problem in x.

Finding an (ε, σ)-solution of this minimization problem gives an approximate solution to the
saddle-point problem (37).

To find this pair, we solve problem (39) using Algorithm 2 with

ϕ = 0, ψ = h(y) + max
x∈Rdx
{−G(x, y) − f (x)} (51)

and parameter H = H1 to be chosen later. The function ϕ is, clearly, convex and is known
exactly. What makes solving problem (39) not straightforward is that the exact value of ψ is not
available. At the same time we can construct an inexact oracle for this function. The function h is
μy-strongly convex, Lh-smooth and its exact gradient is available. By Condition 3 it is possible to

construct a
(

δ(1)(ε), σ(1)
0 (ε, σ), 2LG + 4

L2
G
μx

)

-oracle for the function r(y) = max
x∈Rdx
{− f (x) − G(x, y)} for

any δ(1)(ε) = poly(ε) and σ(1)
0 (ε, σ) = poly(ε, σ). Using Lemma 1, we find that we can construct

a
(

δ(1)(ε), σ(1)
0 (ε, σ), Lh + 2LG + 4

L2
G
μx
, μy

)

-oracle for ψ. Let δ(1)(ε) and σ(1)
0 (ε, σ) satisfy (31) and (32).
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In each iteration k of Algorithm 1 the problem

yt
k+1 = arg min

y∈Rdy

{

h(y) + max
x∈Rdx
{−G(x, y) − f (x)} + H1

2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, (52)

needs to be solved inexactly. Assume that, for each k we can find an
(

ε̃(1)
f (ε), σ̃(1)(ε, σ)

)

-solution to the

problem (15), where σ̃(1)(ε, σ), ε̃(1)
f (ε) satisfy (34) and (35) respectively. Applying Theorem 4, we find

that we require ˜O

(

1 +
(

H1
μy

)1/2
)

iterations of Algorithm 1, ˜O

(

1 +
(

H1
μy

)1/2
)

τh calls of the basic oracle

for h, ˜O

(

1 +
(

H1
μy

)1/2
)

τG calls of the basic oracle of G(x, ·), ˜O
(

1 +
(

H1
μy

)1/2
)

N x
G(τG)K x

G(ε, σ) calls of

the basic oracle for G(·, y), ˜O

(

1 +
(

H1
μy

)1/2
)

N f (τ f )K f (ε, σ) calls of the basic oracle for f .

It remains to show how to find the
(

ε̃(1)
f (ε), σ̃(1)(ε, σ)

)

-solution to problem (52) in each iteration
of Algorithm 1. This is organized in Loop 2 below.

Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need many
times to find an (ε′2, σ

′
2)-solution of the auxiliary problem (52), where we denoted for simplicity σ′2 =

= σ̃(1)(ε, σ) and ε′2 = ε̃
(1)
f (ε). To that end, we reformulate problem (52) as follows:

min
x∈Rdx

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (x) + max
y∈Rdy

{

G(x, y) − h(y) − H1

2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (53)

Assume that we can find an (ε2, σ2)-solution x̂ of the minimization problem (53). By Condition 2 we

can also obtain a point ŷ which is a (
δ(ε2)

2 , σ0(σ2))-solution to the inn problem

max
y∈Rdy

{

G(x, y) − h(y) − H1

2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, (54)

where δ(ε2), σ0(σ2) satisfy the following polynomial dependences:

δ(ε2) �
H1 + μy

4μx

(

H1+μy

4LG

)2
ε2, σ0(σ2) � σ2. (55)

If we choose ε2, σ2, δ(ε2), σ0(σ2) satisfying

ε2 �
(

H1 + μy

4LG

)2
μx

Lh + H1 + LG +
2L2

G
μx

ε′2, (56)

σ2 �
σ′2
2
, (57)

σ0(σ2)
(55)
� σ2 �

σ′2
2
, δ(ε2) �

H1 + μy

4μx

(

H1+μy

4LG

)2
ε2

(55)
�

H1 + μy

4Lh + 4H1 + 4LG +
8L2

G
μx

ε′2, (58)

then

2
Lh + H1 + LG +

2L2
G

μx

H1 + μy
δ(ε2) + 8

(

LG

H1 + μy

)2 Lh + H1 + LG +
2L2

G
μx

μx
ε2 � ε

′
2, (59)

σ2 + σ0(σ2) � σ′2. (60)
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Thus, applying Corollary 1 to the minimization problem (53) with F(x, y) = G(x, y), w(y) = h(y) +

+
H1
2

∥

∥

∥y − ymd
k

∥

∥

∥

2
, εx = ε2, σx = σ2, εy = δ(ε2), σy = σ0(σ2) we find (see (46), (48)) that ŷ satisfies the

inequality

h(̂y) +
H1

2

∥

∥

∥ŷ − ymd
k

∥

∥

∥

2
+ max

x∈Rdx
{−G(x, ŷ) − f (x)}−

− min
y∈Rdy

max
x∈Rdx

{

h(y) +
H1

2

∥

∥

∥y − ymd
k

∥

∥

∥

2 −G(x, y) − f (x)

}

� ε′2 (61)

with probability at least σ′2. Thus, it is an (ε′2, σ
′
2)-solution of the problem (52). By Assumption 2,

calculation of ŷ requires Ny
G(τG, H)Ky

G(ε2, σ2) calls of the basic oracle Oy
G of G(x, ·), τG calls of the

basic oracle Ox
G of G(·, y) and Nh(τh, H)Kh(ε2, σ2) calls of the basic oracle Oh of h.

Our next step is to provide an (ε2, σ2)-solution to the minimization problem (53) and we apply
Algorithm 2 with

ϕ = max
y∈Rdy

{

G(x, y) − h(y) − H1

2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, ψ = f (x). (62)

The function ψ is μx-strongly convex, L f -smooth and its exact gradient is available. What makes
solving problem (53) not straightforward is that the exact value of ϕ is not available. At the same
time we can construct an inexact oracle for this function. Thanks to Assumption 2, it is possible

to construct a
(

δ(2)(ε2), σ(2)
0 (ε2, σ2), 2LG + 4

L2
G

H1+μy

)

-oracle for the function ϕ for any δ(2)(ε2) =

= poly(ε2) and σ(2)
0 (ε2, σ2) = poly(ε2, σ2). Using Lemma 1, we find that we can construct

a
(

δ(2)(ε2), σ(2)
0 (ε2, σ2), L f + 2LG + 4

L2
G

H1+μy
, μx

)

-oracle for the function ϕ + ψ. Thus, we can apply

Algorithm 2 with parameter H = H2 � 2LG + 4
L2

G
H1+μy

, which will be chosen later, to solve

the problem (53). Moreover, since Assumption 2 requires δ(2)(ε2) = poly(ε2) and σ(2)
0 (ε2, σ2) =

= poly(ε2, σ2), which holds for the dependences in (31) and (32), we can choose δ(2)(ε2)

and σ(2)
0 (ε2, σ2) such that (31) and (32) hold. So, the first main assumption of Theorem 4

holds. At the same time, according to Assumptions 1 and 2, constructing inexact oracle for ϕ
requires Ny

G(τG , H1)Ky
G(ε2, σ2) calls of the basic oracle for G(x, ·), τG calls of the basic oracle

for G(·, y), Nh(τh, H1)Kh(ε2, σ2) calls of the basic oracle for h, and constructing exact oracle for ψ = f
requires τ f calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption
holds, we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to find
the

(

ε̃(2)
f (ε2), σ̃(2)(ε2, σ2)

)

-solution to the auxiliary problem (15), where σ̃(2)(ε2, σ2), ε̃(2)
f (ε2) satisfy

inequalities (34) and (35). For the particular definitions of ϕ, ψ (62) in this Loop, this problem has the
following form:

xt
l+1 = argmin

u∈Rdx

{

〈

∇ϕ
δ(2),2Lϕ

(

xmd
l

)

, x − xmd
l

〉

+ ψ(x) +
H2

2

∥

∥

∥x − xmd
l

∥

∥

∥

2

2

}

= (63)

= argmin
x∈Rdx

{

〈

∇gδ(2),2Lg

(

xmd
l

)

, x − xmd
l

〉

+ f (x) +
H2

2

∥

∥

∥x − xmd
l

∥

∥

∥

2
}

, (64)

where g(x) = max
y∈Rdy

{

G(x, y) + h(y) − H1
2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, Lg = LG + 2
L2

G
H1+μy

. Below, in the next section

“Loop 3”, we explain how to solve this auxiliary problem to obtain its
(

ε̃(2)
f (ε2), σ̃(2)(ε2, σ2)

)

-solution.
To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it to

guarantee that we obtain an (ε′2, σ
′
2)-solution of the auxiliary problem (52). This requires us one
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time to solve the problem (54), which, by Assumption 2 has the same cost as evaluating inexact

oracle for the function ϕ. Further, we need O

((

1 +
(

H2
μϕ+μψ

)1/2
)

log ε−1
2

)

= O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

calls to the inexact oracles for ϕ and for ψ, and the same number of times solving the
auxiliary problem (63). Combining this oracle complexity with the cost of calculating inexact

oracles for ϕ and for ψ, we find that solving the problem (53) requires O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

τ f

calls of the basic oracle for f , O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

Ny
G(τG , H1)Ky

G(ε2, σ2) calls of the

basic oracle for G(x, ·), O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

τG calls of the basic oracle for G(·, y),

O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

Nh(τh, H1)Kh(ε2, σ2) calls of the basic oracle for h. The only remaining

thing is to provide an inexact solution to problem (63) and, next, we move to Loop 3 to explain

how to guarantee this. Note that we need to solve problem (63) O

((

1 +
(

H2
μx

)1/2
)

log ε−1
2

)

times.

Loop 3

As mentioned in the previous Loop 2, in each iteration of Algorithm 2 in Loop 2 we need to find
many times an (ε3, σ3)-solution of the auxiliary problem (63), where we denoted for simplicity σ3 =

= σ̃(2)(ε2, σ2) and ε3 = ε̃
(2)
f (ε2). To solve problem (63), we would like to apply Algorithm 2 with

ϕ = f (x), ψ =
〈

∇g
δ(2),2Lg

(

xmd
l

)

, x − xmd
l

〉

+
H2

2

∥

∥

∥x − xmd
l

∥

∥

∥

2
, (65)

where g(x) = max
y∈Rdy

{

G(x, y) + h(y) − H1
2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, Lg = LG + 2
L2

G
H1+μy

.

The function ϕ is μx-strongly convex, L f -smooth and its exact gradient is available. The
function ψ is, clearly, H2-strongly convex, H2-smooth and its exact gradient is available. Also, we
can obtain the exact gradient for the function ϕ + ψ.

Thus, we can apply Algorithm 2 with parameter H = H3 � L f , which will be chosen later,
to solve problem (63). The first main assumption of Theorem 4, clearly, holds. At the same time,
constructing an exact oracle for ϕ = f requires τ f calls of the basic oracle for f . At the same time, no
calls to the oracle for G(·, y), G(x, ·), h are needed.

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption
holds, we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to
find

(

ε̃(3)
f (ε3), σ̃(3)(ε3, σ3)

)

-solution to the auxiliary problem (15), where σ̃(3)(ε3, σ3), ε̃(3)
f (ε3) satisfy

inequalities (34) and (35). For the particular definitions of ϕ, ψ in (65) in this loop, this problem has
the following form:

ut
m+1 = argmin

u∈Rdx

{

〈

∇ϕ
(

umd
m

)

, u − umd
m

〉

+ ψ(u) +
H3

2

∥

∥

∥u − umd
m

∥

∥

∥

2

2

}

=

= argmin
u∈Rdx

{

〈

∇ f
(

umd
m

)

, u − umd
m

〉

+

〈

∇g
δ(2),2Lg

(

xmd
l

)

, u − xmd
l

〉

+
H2

2

∥

∥

∥u − xmd
l

∥

∥

∥

2
+

H3

2

∥

∥

∥u − umd
m

∥

∥

∥

2

2

}

, (66)

where g(x) = max
y∈Rdy

{

G(x, y) + h(y) − H1
2

∥

∥

∥y − ymd
k

∥

∥

∥

2
}

, Lg = LG + 2
L2

G
H1+μy

.
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This quadratic auxiliary problem (66) can be solved explicitly and exactly since at the point
it needs to be solved, ∇g

δ(2),2Lg
(xmd

l ) is already calculated. Thus, the second main assumption of

Theorem 4 is satisfied with σ̃(3)(ε3, σ3) = 0 and ε̃(3)
f (ε3) = 0, which clearly satisfy (31) and (32).

To summarize Loop 3, both main assumptions of Theorem 4 hold and we can use it
to guarantee that we obtain an (ε3, σ3)-solution of the auxiliary problem (63). This requires

O

((

1 +
(

H3
μϕ+μψ

)1/2
)

log ε−1
3

)

= O

((

1 +
(

H3
H2

)1/2
)

log ε−1
3

)

calls to the inexact oracles for ϕ and for ψ,

and the same number of times solving the auxiliary problem (66). Combining this oracle complexity
with the cost of calculating inexact oracles for ϕ and for ψ, we find that solving the problem (63)

requires O

((

1 +
(

H3
H2

)1/2
)

log ε−1
3

)

τ f calls of the basic oracle for f .

Table 4. Summary of the three loops of the general framework described above

Goal ϕ, ψ μ in Th. 4
Iteration number
of Algorithm 1

(Th. 4)

Each iteration
requires

Loop 1
(ε, σ)-solution
of problem (39)

(51) μy
˜O
(

1 +
√

H1
μy

)

Find (ε1, σ1)-solution of (52)
and calculate

(

δ(1), Lψ
)

-oracle of ψ(y)

Loop 2
(ε1, σ1)-solution
of problem (53)

(62) μx
˜O
(

1 +
√

H2
μx

)

Find (ε2, σ2)-solution of (63)
and calculate

(

δ(2), Lϕ
)

-oracle of ϕ(x)

Loop 3
(ε2, σ2)-solution
of problem (63)

(65) H2
˜O
(

1 +
√

H3
H2

)

Find (ε3, σ3)-solution of (66)

Complexity of the general framework

Below we formally finalize in Theorem 5 the analysis of the general framework by carefully
combining the bounds from loops to obtain the final bounds for the total number of oracle calls for
each part f , G, h of the objective in problem (37). We will use Theorem 5 in the following sections to
obtain complexity results for problems with structure as in (1) and (2).

Theorem 5. Let Assumptions 1, 2, 3 hold. Then, execution of the general optimization
framework described in sections “Loop 1” – “Loop 3” with

H1 = 2LG, H2 = 2

⎛

⎜

⎜

⎜

⎜

⎝

LG +
2L2

G

μy + H1

⎞

⎟

⎟

⎟

⎟

⎠

, H3 = 2L f

generates an (ε, σ)-solution to the problem (37), i. e. satisfies (10). Moreover, for the number of basic
oracle calls it holds that

Number of calls of basic oracle O f for f is

˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N f (τ f ) +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

L f

LG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· τ f

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (67)

Number of calls of basic oracle Oh for h is

˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

τh +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Nh

(

τh, 2LG

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (68)
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Number of calls of basic oracle Ox
G for G(·, y) is

˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N x
G(τG) +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

τG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (69)

Number of calls of basic oracle Oy
G for G(x, ·) is

˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

τG +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Ny
G

(

τG, 2LG

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (70)

Accelerated Method for Saddle-Point Problems

In this section, we consider problem (1) which is problem (37) with a specific finite-sum structure
of the function h and our goal is to obtain its (ε, σ)-solution. To get the final estimates for the number
of oracles calls, we need to satisfy Assumptions 1, 2, 3 which are formulated in Section “Accelerated
Framework for Saddle-Point Problems” where we construct our general framework. So, the plan of
this section is first to prove Lemma 4 and Corollary 2, which guarantee that Assumptions 2, 3 hold.
To satisfy Assumption 2 we use a two-loop procedure with Algorithm 2 and the stochastic variance
reduction method to solve problem (49) in order to use the finite-sum structure of the function h and
avoid expensive calculation of the gradient of the whole sum in each iteration. As a corollary, we also
show how to satisfy Assumption 3. Then, we obtain final estimates for the setting of this section by
combining the complexities to satisfy Assumptions 2, 3 with the estimates in Theorem 5.

Problem statement

In this section we consider the optimization problem of the form (1):

min
x∈Rdx

max
y∈Rdy
{ f (x) +G(x, y) − h(y)}, h(y) :=

1
mh

mh
∑

i=1

hi(y) (71)

and develop accelerated optimization methods for its solution under the following assumptions.

Condition 4.

1. Function f (x) is L f -smooth and μx-strongly convex.

2. Function G(x, y) is LG-smooth, i. e. for each (x1, x2), (y1, y2) ∈ Rdx × Rdy

‖∇G(x1, x2) − ∇G(y1, y2)‖ � LG‖(x1, x2) − (y1, y2)‖. (72)

3. mh � 1 and each function hi(x), i ∈ 1, . . . , mh is Li
h-smooth and convex, function h(y) is

μy-strongly convex. We also define Lh =
1

mh

mh
∑

i=1
Li

h in this case.

To fit Condition 1 we consider the full gradient oracles ∇xG(x, y), ∇yG(x, y), ∇ f (x) as the basic
oracles Ox

G, Oy
G, O f , respectively, and the stochastic gradient oracle ∇hi(y) as the basic oracle Oh. Then

Condition 4 guarantees that Condition 1 holds with

τ f = τG = 1, τh = mh. (73)

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



On Accelerated Methods for Saddle-Point Problems with . . . 457

Preliminaries

We start with two auxiliary results, which show how Assumptions 2 and 3 can be satisfied in the
setting of this section. The first lemma provides complexity for inexact solution of the maximization
problem (49) and the complexity of finding an inexact oracle for function g defined in the same
equation.

Lemma 4. Let the function g be defined via the maximization problem in (49), i. e.

g(x) = max
y∈Rdy

{

G(x, y) − h(y) − H
2
‖y − y0‖2

}

, (74)

where G(x, y), h(y) correspond to (71) and satisfy Condition 4, y0 ∈ Rdy . Assume also that mh(H+2LG+

+μy) � Lh and H+μy � 4LG. Then, organizing computations in two loops and applying Algorithm 2 in
the outer loop and accelerated variance reduction method L-SVRG from [Morin, Giselsson, 2020] in
the inner loop, we guarantee Condition 2 with τG = 1 basic oracle calls for G(·, y) and the following
estimates for the number of basic oracle calls for G(x, ·) and h, respectively:

Ny
G(τG , H) = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (75)

Nh(τh, H) = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

τhLh

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (76)

Proof. To satisfy Condition 2, we need to provide an
(

δ(ε)
2 , σ0(ε, σ)

)

-solution to the problem (74)

and (δ(ε), σ0(ε, σ), 2Lg)-oracle of g in (74), where Lg = LG +
2L2

G
μy+H .

By Lemma 2 with F(x, y) = G(x, y), w(y) = h(y)+ H
2 ‖y−y0‖2, δ = δ(ε) and σ0 = σ0(ε, σ) applied

to the problem (74), if we find a
(

δ
2 , σ0

)

-solution ỹδ/2(x) of the problem (74), then ∇xG
(

x, ỹδ/2(x)
)

is (δ, σ0, 2Lg)-oracle of g and its calculation requires τG = 1 calls of the oracle ∇xG(·, y). To finish

the proof, we now focus on obtaining a
(

δ
2 , σ0

)

-solution ỹδ/2(x) of the problem (74), for which we
construct a two-loop procedure described below.

Loop 1

The goal of Loop 1 is to find an
(

δ(ε)
2 , σ0(ε, σ)

)

-solution of problem (74) as a maximization
problem in y.

To obtain such an approximate solution, we change the sign of this optimization problem and
apply Algorithm 2 with

ϕ = −G(x, y), ψ = h(y) +
H
2
‖y − y0‖2. (77)

Function ϕ is convex and has LG-Lipschitz continuous gradient, function ψ is H + μy-strongly convex
and has Lh + H-Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact oracles and
parameter H1 � 2LG , which will be chosen later, to solve problem (74). To satisfy the conditions of
Theorem 4, which gives the complexity of Algorithm 2, we, first, observe that the oracles of ϕ and ψ
are exact and, second, observe that we need in each iteration of Algorithm 1, used as a building block
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in Algorithm 2, to find an
(

ε̃(1)
f

(

δ
2

)

, σ̃(1)
(

δ
2 , σ0

))

-solution to the auxiliary problem (15), which in this
case has the following form:

zt
k+1 = argmin

z∈Rdy

{
〈

∇ϕ
(

zmd
k

)

, z − zmd
k

〉

+ ψ(z) +
H1

2

∥

∥

∥z − zmd
k

∥

∥

∥

2

2} =

= argmin
z∈Rdy

{

−
〈

∇zG
(

x, zmd
k

)

, z − zmd
k

〉

+ h(z) +
H
2
‖z − y0‖2 +

H1

2

∥

∥

∥z − zmd
k

∥

∥

∥

2

2

}

, (78)

where σ̃(1)
(

δ
2 , σ0

)

, ε̃(1)
f

(

δ
2

)

need to satisfy inequalities (34) and (35). Below, in the section “Loop 2”
we explain how to solve this auxiliary problem by a variance reduction method in such a way that
these inequalities hold.

To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to guarantee
that we obtain an

(

δ
2 , σ0

)

-solution of problem (74). Due to polynomial dependences δ(ε) = poly(ε),

σ0(ε, σ) = poly(ε, σ) this requires ˜O

(

1 +
(

H1
μϕ+μψ

)1/2
)

= ˜O

(

1 +
(

H1
μy+H

)1/2
)

calls to the (exact) oracles

for ϕ and for ψ, and the same number of times solving the auxiliary problem (78). Combining this
oracle complexity with the cost of calculating (exact) oracles for ϕ and for ψ, we find that solving the

problem (74) requires ˜O

(

1 +
(

H1
μy+H

)1/2
)

calls of the basic oracle for G(x, ·) and ˜O

(

mh + mh

(

H1
μy+H

)1/2
)

of the basic oracles for h, i. e. stochastic gradients ∇hi. The only remaining thing is to provide an
inexact solution to problem (78) and, next, we move to Loop 2 to explain how to guarantee this. Note

that we need to solve problem (78) ˜O

(

1 +
(

H1
μy+H

)1/2
)

times.

Loop 2

We solve problem (78) by the algorithm L-SVRG proposed in [Morin, Giselsson, 2020], whose
complexity is stated in Lemma 13, see Supplementary materials.

As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need many
times to find an (ε2, σ2)-solution of the auxiliary problem (78), where for simplicity we denote σ2 =

= σ̃(1)
(

δ
2 , σ0

)

and ε2 = ε̃
(1)
f

(

δ
2

)

.
To obtain such an approximate solution, we apply L-SVRG from [Morin, Giselsson, 2020] with

(see Lemma 13 in Supplementary materials)

ϕ =
1

mh

mh
∑

i=1

(

hi(z) +
H
2
‖z − y0‖2 +

H1

2

∥

∥

∥z − zmd
k

∥

∥

∥

2

2

)

︸�������������������������������������������︷︷�������������������������������������������︸

ϕi(z)

, ψ = −
〈

∇zG
(

x, zmd
k

)

, z − zmd
k

〉

. (79)

Functions ϕi are convex and have Li
h + H + H1-Lipschitz continuous gradient for all i = 1, . . . , mh,

function ψ is convex, 0-smooth and prox-friendly. Also, function ϕ is μy + H + H1-strongly convex.
Thus, all the conditions of Lemma 13 in Supplementary Materials are satisfied and we can apply
L-SVRG from [Morin, Giselsson, 2020] to solve problem (78). From this lemma we get an

estimate ˜O

(

mh +

√

mh(Lh+H+H1)
μy+H+H1

)

for the number of calls of the basic oracle for h.

To summarize Loop 2, the assumptions of Lemma 13 in Supplementary Materials hold and we
can use it to guarantee that we obtain an (ε2, σ2)-solution of problem (78). According to the polynomial
dependences (34) and (35), we find that

σ2 = σ̃
(1)
(

δ

2
, σ0

)

= poly
(

δ

2
, σ0

)

, ε2 = ε̃
(1)
f

(

δ

2
, σ0

)

= poly
(

δ

2
, σ0

)

.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



On Accelerated Methods for Saddle-Point Problems with . . . 459

Using conditions δ(ε) = poly(ε), σ0(ε, σ) = poly(ε, σ) in the formulation of Asumption 2, we find
that the dependences

σ2(ε, σ), σ̃(1)(ε, σ), ε2(ε, σ), ε̃(1)
f (ε, σ)

are polynomial. Then, we can use notation ˜O(·) without specifying what precision we mean and
implying that the logarithmic part depends on the initial ε, σ. Finally, according to Lemma 13 in

Supplementary materials an (ε2, σ2)-solution of problem (78) requires ˜O

(

mh +

√

mh(Lh+H+H1)
μy+H+H1

)

calls of

the basic oracle for h, i. e. stochastic gradients ∇hi, and the same number of times solving the auxiliary
problem of the form argmin

y
{ψ(y) + 1

2α‖y − y‖22}. This problem is solved explicitly since ψ(y) is a linear

function.

Combining the estimates of both loops

Combining the estimates of the above section “Loop 1” and paragraph “Loop 2” we see that,
finding a point ỹδ/2(x) which is an

(

δ(ε)
2 , σ0(ε, σ)

)

-solution to the problem (74) requires the following
number of calls of the basic oracles of G(x, ·) and h, respectively:

˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

H1

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (80)

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2) = (81)

= ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh + mh

√

H1

H + μy
+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

H1

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

mh(Lh + H + H1)

μy + H + H1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Finding (δ(ε), σ0(ε, σ), 2Lg)-oracle of g by calculating ∇xG
(

x, ỹδ/2(x)
)

requires additionally τG = 1
calls of the basic oracle for G(·, y). Since in Condition 2 we denote the dependence on the target
accuracy ε and confidence level σ by a separate quantities denoted by K(ε, σ) and in this case it is
logarithmic, choosing H1 = 2LG we get the final estimates for Ny

G and Nh to guarantee that Condition 2
holds:

Ny
G = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (82)

Nh = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

2LG

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

mh(Lh + H + 2LG)

μy + H + 2LG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

= O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

2LG

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

mhLh

μy + H + 2LG

+

√

mh(H + 2LG)

μy + H + 2LG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

= O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

2LG

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

mhLh

μy + H + 2LG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

= O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

2LG

H + μy

√

mhLh

2LG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mh +

√

mhLh

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

mhLh

H + μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (83)

where we used that, by the assumptions of this lemma, 1 �
4LG

H+μy
, mh(H +2LG +μy) � Lh and ∀a, b � 0√

a + b �
√

a +
√

b. �

By changing the variables x and y in Lemma 4 and choosing H = 0 we obtain the simple
Corollary 2 which ensures Assumption 3.
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Corollary 2. Let the function r be defined via the maximization problem in (50), i. e.

r(y) = min
x∈Rdx
{G(x, y) + f (x)}, (84)

where G(x, y), f (y) are according to (71) and satisfy Condition 4. Assume also that 2LG + μx � L f
and μx � 4LG. Then, organizing computations in two loops and applying Algorithm 2 in the outer loop
and the accelerated variance reduction method L-SVRG from [Morin, Giselsson, 2020] in the inner
loop, we guarantee Condition 3 with τG = 1 basic oracle calls for G(x, ·) and the following estimates
for the number of basic oracle calls for G(·, y), f , respectively:

N x
G(τG) = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +

√

LG

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (85)

N f (τ f ) = O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L f

μx

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (86)

Final estimates

We are now in a position to state the final result of this section for the complexity estimates
when solving problem (71). Assumption 4 with (73) guarantee that Condition 1 holds. Lemma 4 and
Corollary 2 guarantee that Assumptions 2, 3 hold.

Thus, all the conditions of Theorem 5 are satisfied and we obtain the following result for solving
the problem (71) with our system of inner-outer loops.

Theorem 6. Assume that for the problem (71) Assumption 4 holds and additionally mh(4LG +

+ μy) � Lh, 2LG + μx � L f , μy � LG, μx � LG.

Then the general framework, described in Section “Accelerated Framework for Saddle-Point
Problems”, combined with the algorithms described in the previous subsection, find an (ε, σ)-solution
to problem (71) with the following number of basic oracle calls

∇ f -oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGL f

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (87)

∇hi-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

mhLGLh

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (88)

∇xG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (89)

∇yG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (90)

An important particular case for which we state the following corollary is when it does not have
the finite-sum, i. e. mh = 1.

Corollary 3 (particular case mh = 1). Let the assumptions of Theorem 6 hold and
additionally mh = 1. Then the general framework described in Section “Accelerated Framework for

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



On Accelerated Methods for Saddle-Point Problems with . . . 461

Saddle-Point Problems”, combined with the algorithms described in the previous subsection, find an
(ε, σ)-solution to problem (71) with the following number of basic oracle calls:

∇ f -oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGL f

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (91)

∇h-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGLh

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (92)

∇xG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (93)

∇yG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (94)

Accelerated Methods for Saddle-Point Problems with Finite-Sum Structure

In this section, we consider problem (2), which is problem (37) with a specific finite-sum
structure of the function G. The algorithms in this section are, in fact, deterministic, i. e. correspond to
confidence levels σ = 0. Thus, our goal is to obtain an ε-solution to problem (2). As in the previous
section, we use the general framework described in Section “Accelerated Framework for Saddle-Point
Problems”, but in a simpler setting of all the confidence levels σ being equal to zero. To obtain the
final estimates for the number of basic oracles calls, we need to satisfy Assumptions 1, 2, 3 which are
formulated in Section “Accelerated Framework for Saddle-Point Problems”, where we construct our
general framework. The proof that these assumptions hold and the proof of the resulting complexity
bounds follow mostly the same lines as for the case of problem (71) under Assumption 4 in the previous
section, but are rather technical. Thus, in this section we only state the main results and the proofs are
deferred to the Appendix.

Problem statement

In this section we consider the optimization problem of the form (2):

min
x∈Rdx

max
y∈Rdy
{ f (x) +G(x, y) − h(y)}, G(x, y) :=

1
mG

mG
∑

i=1

Gi(x, y), (95)

and develop accelerated optimization methods for its solution under the following assumptions.

Condition 5.

1. Function f (x) is μx-strongly convex, and function h(y) is μy-strongly convex.

2. mG � 1 and each function Gi(x, y), i ∈ 1, . . . , mG is convex in x and concave in y, and
Li

G-smooth, i. e. for each x = (x1, x2), y = (y1, y2) ∈ Rdx × Rdy

‖∇Gi(x1, x2) − ∇Gi(y1, y2)‖ � Li
G‖(x1, x2) − (y1, y2)‖. (96)

We also define LG =
1

mG

mG
∑

i=1
Li

G.

3. One of the following statements holds for the functions f (x), h(y):

(a) Function f (x) is L f -smooth and function h(y) is Lh-smooth;

(b) Function f (x) is L f -smooth, function h(y) is Lh-smooth and prox-friendly.
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Under Condition 5.2 it is easy to see that the function G(x, y) in problem (95) is LG-smooth.
Indeed,

‖∇G(x1, x2) − ∇G(y1, y2)‖ � 1
mG

mG
∑

i=1

‖∇Gi(x1, x2) − ∇Gi(y1, y2)‖ �

�
1

mG

mG
∑

i=1

Li
G‖(x1, x2) − (y1, y2)‖ = LG‖(x1, x2) − (y1, y2)‖,

where x = (x1, x2), y = (y1, y2) ∈ Rdx × Rdy .

To further fit Condition 1, we consider the full gradient oracles ∇h(y), ∇ f (x) as the basic
oracles Oh, O f , respectively, and the stochastic gradient oracle ∇xGi(x, y), ∇yGi(x, y) as the basic

oracles Ox
G, Oy

G, respectively. Then Condition 5 guarantees that Condition 1 holds with

τ f = τh = 1, τG = mG. (97)

Complexity estimates

In this section we consider problem (95) under one of the two different Assumptions 5.3(a)
or (b) and mostly follow the lines of derivations described in Section “Accelerated Method for Saddle-
Point Problems” with appropriate changes caused by the different problem statement. In particular, we
change the order of the loops in the general framework described in Section “Accelerated Framework
for Saddle-Point Problems” as well as in the proof of Lemma 4 and Corollary 2 depending on which
is larger: Lh or LG and L f or LG. This eventually allows us to avoid assumptions of the form 4LG +

+ μy � Lh, 2LG + μx � L f , which are used in Theorem 6. The proof of the resulting complexity bounds
follows mostly the same ideas as for the case of problem (71) under Assumption 4, but is rather
technical. Thus, in this section we only state the result and the proofs are deferred to the appendices.
In Supplementary Materials we propose a variation of the general framework described in Section
“Accelerated Framework for Saddle-Point Problems”, but with the change of the order of Loop 2 and
Loop 3. As a result, we prove Theorem 10 which is a counterpart of Theorem 5. In Supplementary
Materials we prove Lemma 14 and Corollary 4, which generalize Lemma 4 and Corollary 2 in two
aspects. First, we consider the function G given in (95). Second, we do not use the assumption mh(H +
+ 2LG + μy) � Lh of Lemma 4 and 2LG + μx � L f of Corollary 2.

We start by considering problem (95) under Assumption 5.1,2,3(a). This assumption, combined
with (97), guarantees that Condition 1 holds. Lemma 14 and Corollary 4 in Supplementary Materials
guarantee that Assumptions 2, 3 hold. This allows us to combine Lemma 14 and Corollary 4 with
either Theorem 5 if L f � LG, or Theorem 10 in Supplementary Materials if L f � LG. The resulting
complexity estimates for solving problem (95) with our system of inner-outer loops are given in the
next theorem which is proved in Supplementary Materials. Notice that in this case the algorithm is
fully deterministic and we find an ε-solution to problem (95).

Theorem 7. Assume that for problem (95) Assumption 5.1,2,3(a) holds and
additionally μx � LG, μx � L f and μy � LG. Then using the general framework from Section
“Accelerated Framework for Saddle-Point Problems”, the general framework in Supplementary
Materials, Lemma 14 and Corollary 4 for each relation between Lh, LG and L f , LG, respectively, we
provide an algorithm which finds an ε-solution to problem (95) with the following number of basic
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oracle calls:

∇ f -oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGL f

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (98)

∇h-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

LGLh

μxμy
,

√

L2
G

μxμy

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (99)

∇xGi-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mG

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (100)

∇yGi-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mG

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (101)

We prove this theorem in the Appendix.
We would like to emphasize that, even though we do not use variance reduction techniques

in the algorithm described in Theorem 7, under assumption 5.1,2,3(a) our bounds are better than the
bounds obtained by the variance reduction method proposed in [Palaniappan, Bach, 2016]. To solve
the problem (95) by the algorithm of [Palaniappan, Bach, 2016], we need to restate this problem as

min
x∈Rdx

max
y∈Rdy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
mG

mG
∑

i=1

(

˜Gi(x, y) := f (x) +Gi(x, y) − h(y)
)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

with the objective being L
˜G
= max{LG + L f , LG + Lh}-smooth. The algorithm in [Palaniappan, Bach,

2016] does not propose a way to separate the complexities for different parts of the objective and the
resulting number of oracle calls for each part is the same

∇ f , ∇h, ∇xGi, ∇yGi-oracle calls : ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

mG

L
˜G

min{μx, μy}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (102)

Comparing these estimates with the estimates of Theorem 7, we make two important observations.

• Due to our approach with complexity separation the estimates from Theorem 7 on the number
of oracle calls for f and h are always better than the corresponding estimates in (102) at least by
a factor √mG.

• At first sight, the estimates on the number of calls of ∇xGi and ∇yGi from Theorem 7 seem
worse than the corresponding estimates in (102) due to the additional factor √mG. However, this
is not the case, for example, when L f or Lh are large enough, leading to L

˜G � LG. This can be
demonstrated by taking mGLG � L f , then the estimates on the number of calls of ∇xGi and ∇yGi

in Theorem 7 become

√

L2
f

μxμy
, which is smaller than the estimates in (102).

An interesting open question is whether we can improve the complexity bounds in Theorem 7 by
applying variance reduction methods to ensure Assumptions 2 and 3. We conjecture that it is possible

to improve the bounds (100) and (101) to ˜O

⎛

⎜

⎜

⎜

⎜

⎝

√

mGL2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎠

.

As a particular case of problem (95) we can consider problem (71) with mh = 1. This allows us
to relax the assumptions mh(4LG + μy) � Lh, 2LG + μx � L f , μy � LG made in Corollary 3 and obtain
the following corollary of the previous theorem. Notice that again in this case the algorithm is fully
deterministic and we find an ε-solution to problem (71).
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Corollary 4. Assume that for problem (71) Assumption 4 holds and additionally mh = 1,
μx � LG, μx � L f and μy � LG. Then, using the general framework from Section “Accelerated
Framework for Saddle-Point Problems”, the general framework in Supplementary Materials and
Lemma 14 with Corollary 4 for each relation between Lh, LG and L f , LG, respectively, we provide
an algorithm which finds an ε-solution to problem (71) with the following number of basic oracle
calls:

∇ f -oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGL f

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (103)

∇h-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

LGLh

μxμy
,

√

L2
G

μxμy

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (104)

∇xG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (105)

∇yG-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (106)

We now turn to the problem (95) under Assumption 5.1,2,3(b). This assumption, combined
with (97), guarantees that Condition 1 holds. Part 3(b) allows a simple construction, which is given in
the proof of Lemma 15 in Supplementary Materials, to guarantee Assumption 2. The main difference
from Lemma 14 is that due to the prox-friendliness of h the second loop is not needed and it is sufficient
to apply just Algorithm 2 to solve problem (49) in Assumption 2. Corollary 4 in Supplementary
Materials guarantees that Assumption 3 holds. This allows us to combine Lemma 14 and Corollary 4
with either Theorem 5 if L f � LG, or Theorem 10 in Supplementary Materials if L f � LG. The resulting
complexity estimates for solving problem (95) with our system of inner-outer loops are given in the
next theorem which is proved in Supplementary Materials. Notice that in this case the algorithm is
fully deterministic and we find an ε-solution to problem (95).

Theorem 8. Assume that for problem (95) Assumption 5.1,2,3(b) holds and
additionally μx � LG, μx � L f and μy � LG. Then, using the general framework from Section
“Accelerated Framework for Saddle-Point Problems”, the general framework in Supplementary
Materials and Lemma 15 with Corollary 4 for each relation between Lh, LG and L f , LG, respectively,
we provide an algorithm which finds an ε-solution to problem (95) with the following number of basic
oracle calls:

∇ f -oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LGL f

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (107)

∇h-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

LG

μy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (108)

∇xGi-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mG

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (109)

∇yGi-oracle calls: ˜O

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mG

√

L2
G

μxμy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (110)

We prove this theorem in Supplementary Materials.
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REMARK 2. In this remark, using the results from [Song, Wright, Diakonikolas, 2021], we show how
we can utilize our approach to solve the problems of structured nonsmooth convex finite-sum optimization that
appears widely in machine learning applications, including support vector machines and least absolute deviation.

We consider large-scale regularized nonsmooth convex empirical risk minimization (ERM) of linear
predictors in machine learning. Let bi ∈ Rn

x, i = 1, 2, . . . , n, be sample vectors with n typically large; fi : R→ R,
i = 1, 2, . . . , n, be possibly nonsmooth convex loss functions associated with the linear predictor 〈bi, x〉. The
problem we study is

min
x∈Rdx

max
y∈Rdy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
n

n
∑

i=1

fi(〈bi, x〉 +G(x, y) − h(y)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (111)

We require that the convex conjugates of the functions fi, defined by f ∗i (zi) := max
ξi

(ξizi − fi(ξi)), admit efficiently

computable proximal operators. Thus, we can rewrite the function 1
n

n
∑

i=1
fi(〈bi, x〉) in the following way:

1
n

n
∑

i=1

fi(〈bi, x〉) = 1
n

n
∑

i=1

max
zi

(

zi〈bi, x〉 − f ∗i (zi)
)

= max
z∈Rn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈z, Bx〉 − 1
n

n
∑

i=1

f ∗i (zi)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (112)

where y = (y1, . . . , yn), B = 1
n [b1, . . . , bn]T . Then by substitution of the equation (112) into the problem (111),

we obtain

min
x∈Rdx

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
y∈Rdy
{G(x, y) − h(y)} +max

z∈Rn

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈z, Bx〉 − 1
n

n
∑

i=1

f ∗i (zi)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (113)

We can use another notation η = (y, z) and rewrite the problem (113) as follows:

min
x∈Rdx

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
η=(y, z)∈Rdy+n

⎧

⎪

⎪

⎨

⎪

⎪

⎩

G(x, y) − h(y) + 〈z, Bx〉 − 1
n

n
∑

i=1

f ∗i (zi)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (114)

which we can solve using the general framework from Section “Accelerated Framework for Saddle-Point

Problems” under the differences assumptions. It is worth mentioning that the function f ∗(z) = 1
n

n
∑

i=1
f ∗i (zi) is

separable and admits an efficiently computable proximal operator. This the primal-dual problem (112) has
significantly lower complexity than the saddle-point problem (111). That means we can use the primal-dual
approach with no care that the saddle-problem (114) becomes more complex.
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