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In various applications, i. e., astronomical imaging, electron microscopy, and tomography, images
are often damaged by Poisson noise. At the same time, the thermal motion leads to Gaussian noise.
Therefore, in such applications, the image is usually corrupted by mixed Poisson – Gaussian noise.

In this paper, we propose a novel method for recovering images corrupted by mixed Poisson –
Gaussian noise. In the proposed method, we develop a total variation-based model connected with the
nonconvex function and the total generalized variation regularization, which overcomes the staircase
artifacts and maintains neat edges.

Numerically, we employ the primal-dual method combined with the classical iteratively
reweighted l1 algorithm to solve our minimization problem. Experimental results are provided to
demonstrate the superiority of our proposed model and algorithm for mixed Poisson – Gaussian removal
to state-of-the-art numerical methods.
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1. Introduction

Image denoising is an important step in various applications such as astronomical imaging,
electron microscopy, tomography [Brune, Sawatzky, Burger, 2011; Okawa et al., 2012; Cesarelli et al.,
2013; Mevenkamp et al., 2015; Zhang, Song, Dai, 2017]. In these applications, image sensors measure
scene irradiance by counting the number of photons coming on the sensor. The independent events
of photon detections follow a random distribution. The uncertainty described by this distribution is
known as photon noise, also known as Poisson noise [Hasinoff, 2014; Pham et al., 2019]. Besides, the
thermal motion of charges inside the system leads to thermal noise, which is present in all electrical
circuits and increases with temperature. Practically, thermal noise is often modelled as an additive
white Gaussian noise [Ott, 1976]. Therefore, the mixed Poisson – Gaussian noise can obviously express
the noise present in these imaging applications. [Benvenuto et al., 2008; Chouzenoux et al., 2015].

With growing interest in the Poisson – Gaussian noise model, there exist many methods
of image denoising of images under Poisson – Gaussian noise, for instance, the simplified noise
model [Jeong et al., 2014], Variance Stabilization [Bohra et al., 2019], exact Poisson – Gaussian
likelihood [Chouzenoux et al., 2015], blindspot neural network [Khademi et al., 2021], total variation
(TV) based methods [Calatroni, De Los Reyes, Schronlieb, 2017], Anscombe transformation [Makitalo,
Foi, 2013], dictionary learning [Zou, Xia, 2018] etc.

In this work, we focus on the TV based method for Poisson – Gaussian noise removal. Under the
TV framework, the TV-based mixed Poisson – Gaussian noise removal model is expressed as follows
(TV model) [Pham, Tran, Gamard, 2020]:

U∗ = argmin
U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫

B
|∇X| dx +

λ

2

∫

B
(U − F)2 dx + β

∫

B
(U − F log U) dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where F is the noise image; B ⊂ R2 is a bounded open set, U must be positive over Ω; and λ, β are
positive regularization parameters.

The TV regularization framework (1) allows the noise removal well with sharp edges.
Unfortunately, it often leads to undesired staircase artifacts in the reconstruction, since it tends to
transform the smooth regions of the result into piecewise constant regions during the iterative process.
Many modified TV regularizations were proposed to overcome the issue, such as total generalized
variation [Bredies, Kunisch, Pock, 2010; Bredies, Dong, Hintermller, 2013; He et al., 2014a], nonlocal
total variation [Kayyar, Jidesh, 2018], TV combined with a higher-order term [Lysaker, Tai, 2006; Li
et al., 2007], fractional order TV [Chowdhury et al., 2020], overlapping TV [Jon et al., 2021], Euler’s
elastic model [Zhang et al., 2017], the mean curvature model [Gong, 2019], and so on. In this paper,
we focus on the total generalized variation (TGV) regularization which has a superior performance in
image reconstruction to TV-based regularization models. The TGV model for mixed Poisson – Gaussian
noise removal can be expressed as follows (TGV) [Pham et al., 2021]:

U∗ = argmin
U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
TGV2

α(U) +
λ

2

∫

B
(U − F)2 dx + β

∫

B
(U − F log U) dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

where the first term TGV2
α is the second-order TGV regularization, and the scalar α = (α1, α2) is the

positive parameter.
The TGV-based model (2) is better than the TV model in suppressing the staircasing effect

with superior performance. However, the TGV regularization can blur the details of an image while
removing noise, and sometimes even lost some details. To avoid the issue, nonconvex TGV (NC TGV)
was designed to further preserve sharp discontinuities and clear details of the image while suppressing
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the artifact effect [Zhang et al., 2018; Na et al., 2019]. In this work, we investigate the nonconvex total
generalized variation regularization model to remove mixed Poisson – Gaussian noise, which cleverly
combines the advantage of TGV regularization with nonconvex penalty as follows:

U∗ = argmin
U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
NCTGV2

α(U) +
λ

2

∫

Ω

(U − F)2 dx + β
∫

Ω

(U − F log U) dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where NCTGV2
α is the nonconvex form of TGV2

α, and its definition will be given in the next section.

Our main contributions to this paper are the following. We propose a novel total variation model
for recovering images under mixed Poisson – Gaussian noise on the basis of the nonconvex penalty with
the TGV regularizer. The second important contribution is a combination of the classical iteratively
reweighted l1 algorithm and primal-dual framework for solving the minimization problem. Finally, in
comparison with existing models, experimental results demonstrate significantly better outcomes of our
method for image reconstruction than those of compared methods, with respect to image restoration
accuracy and visual quality.

The rest of the paper is organized as follows. Section 2 establishes a novel mixed Poisson –
Gaussian image denoising model. In Section 3, we propose an alternating minimization method for
solving the minimization problem. We present some reconstruction results of our proposed method and
compare them with the results obtained by well-known existing methods in Section 4. Finally, some
conclusions are given in Section 5.

2. The Proposed model

The concept of the second-order TGV is introduced in [Bredies, Kunisch, Pock, 2010; Bredies,
Dong, Hintermller, 2013], thus omitted. According to [Bredies, Kunisch, Pock, 2010; Bredies, Dong,
Hintermller, 2013], the discrete TGV2

α regularization of U can be formulated as

TGV2
α(U) = min

M
α1‖∇U −M‖1 + α2‖E(M)‖1, (4)

where M = (M1, M2)T , E(M) = 1
2

(
∇M + ∇MT

)
.

The operators E(M) and ∇U can be defined as follows:

∇U =
[∇1U
∇2U

]

and E(M) =

[ ∇1M1
1
2 (∇2M1 + ∇1M2)

1
2 (∇2M1 + ∇1M2) ∇2M2

]

, (5)

where ∇ = (∇1; ∇2), ∇1 and ∇2 are derivative operators in the horizontal and vertical directions,
respectively.

Using nonconvex potential function in the TGV2
α regularization (4), the nonconvex regularization

is described as
NCTGV2

α(U) = min
M

(
α1Φ(‖∇U −M‖1) + α2Φ(‖E(M)‖1)

)
, (6)

where Φ is a nonconvex potential function.

In this paper, we introduce a nonconvex potential function Φ(|q|) = (|q| + ε)s, 0 < s < 1, ε > 0.
From (3), (4), and (6), we propose a novel NCTGV regularized model for mixed Poisson – Gaussian
noise removal as follows (NCTGV model):

min
U,M

(

α1Φ(‖∇U −M‖1) + α2Φ(‖E(M)‖1) +
λ

2
(U − F)2 + β〈1, U − F log U〉

)

. (7)
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Using the iteratively reweighted l1 algorithm [Candes, Wakin, Boyd, 2008], we construct (7) to
the following convex approximation:

min
U,M

(

α1ω
(k)
1 (‖∇U −M‖1) + α2ω

(k)
2 (‖E(M‖1) + +

λ

2
(U − F)2 + β〈1, U − F log U〉

)

, (8)

where ω(k)
1 and ω(k)

2 are two weights calculated in the kth iteration as follows:

ω(k)
1 =

s
(∥∥∥∇U(k)

∥∥∥
1 + ε

)s−1
and ω(k)

2 =
s

(∥∥∥E (M(k))
∥∥∥ + ε

)s−1
.

3. Computational method

In this section, we introduce the numerical method for the problem (8) in detail. For solving
the aforementioned optimization problem, many effective numerical techniques can be used, for
instance, the primal–dual algorithm [Chambolle, 2004; Chambolle, Pock, 2011], the augmented
Lagrangian method [He et al., 2014b; Huang, Ng, Wen, 2008; Wang et al., 2008], the split Bregman
method [Goldstein, Osher, 2009; Chen, Chen, Xue, 2015], etc. In this paper, we focus on the primal-
dual algorithm and employ it to solve our minimization problem (8).

Returning to the variable splitting method [He et al., 2014b; Chen, Chen, Xue, 2015], we
introduce the auxiliary variable Z and take the replacement Z = U. Thus, solving the minimization
problem (8) is to deal with the following constrained optimization problem:

min
Z,U,M

(

α1ω
(k)
1 (‖∇U −M‖1) + α2ω

(k)
2 (‖E(M)‖1) +

λ

2
(Z − F)2 + β〈1, Z − F log Z〉

)

, s.t. Z = U. (9)

The above problem can be converted into the unconstrained minimization problem as follows:

(
Z(k+1), U(k+1), M(k+1)

)
= min

Z,U,M

(
ω1γ

(k)
1 (‖∇U −M‖1) + α2ω

(k)
2 (‖E(M)‖1)+

+
λ

2
(Z − F)2 + β〈1, Z − F log Z〉 + θ

2
‖Z − U − b‖22

)

, (10)

where b(k+1) = b(k) +
(
U(k+1) − Z(k+1)

)
.

Hence, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
U(k+1), M(k+1)

)
= argmin

U,M

(

α1ω
(k)
1 (‖∇U −M‖1) + α2ω

(k)
2 (‖E(M)‖1) +

θ

2

∥∥∥Z(k) − U − b(k)
∥∥∥

2

2

)

,

Z(k+1) = argmin
Z

(
λ

2
(Z − F)2 + β〈1, Z − F log Z〉 + θ

2

∥∥∥Z − U(k+1) − b(k)
∥∥∥

2

2

)

,

b(k+1) = b(k) +
(
U(k+1) − Z(k+1)

)
.

(11)

To optimize the subproblems U and M in (11), we employ the primal–dual algorithm [Esser,
Zhang, Chan, 2010; Chambolle, Pock, 2011], which was used for a variety of convex optimization
problems appearing in image processing. Under the Legendre – Fenchel transform [Rockafellar, 1970],
the minimization problem can be expressed equivalently by the following convex concave saddle-point
problem:

min
U,M

max
p∈P,q∈Q

(

〈∇U −M, p〉 + 〈E(M), q〉 + θ
2

∥∥∥Z − U(k) − b(k)
∥∥∥

2

2

)

,
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where p and q stand for two dual variables. The corresponding feasible sets P and Q associated with
these variables are defined as

P =
{
p = (p1, p2)T | ‖p‖∞ � α1ω

(k)
1

}
,

Q =
{

q =
(
q11 q12
q21 q22

)

| ‖q‖∞ � α2ω
(k)
2

}

.

Subsequently, using the projection algorithm, the solutions for the dual variables p and q can be
found as follows:

p(k+1) =
p(k) + ζ

(
∇Ũ(k) − M̃(k)

)

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1,

∣∣∣∣p(k) + ζ
(
∇Ũ(k) − M̃(k)

)∣∣∣∣

α1ω
(k)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

q(k+1) =
q(k) + ζE

(
M̃(k)

)

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1,

∣∣∣∣q(k) + ζE
(
M̃(k)

)∣∣∣∣

α2ω
(k)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

where ζ is a step parameter.
The minimization problem for the primal variable U has the following form:

min
U

(〈
∇U, p(k+1)

〉
+
θ

2

∥∥∥U − Z(k) + b(k)
∥∥∥

2

2

)

. (14)

Based on the discrete divergence operator [Esser, Zhang, Chan, 2010], we transform the
problem (14) to the following minimization problem:

min
U

(

−
〈
U, div p(k+1)

〉
+
θ

2

∥∥∥U − Z(k) + b(k)
∥∥∥

2

2

)

, (15)

where div p(k+1) =
(
∇1 p(k+1)

1 + ∇2 p(k+1)
2

)
.

Using the gradient descent method, the solution of U in (15) can be identified as

U(k+1) = U(k) − τ
(
−div p(k+1) + θ

(
U(k+1) − Z(k) + b(k)

))
.

Hence, we obtain

U(k+1) =
U(k) + τ

(
div p(k+1) + θ

(
Z(k) − b(k)

))

1 + τθ
. (16)

For the primal variable M, we have the following minimization problem:

min
M

(〈
−M(k), p(k+1)

〉
+ 〈E(M), q〉

)
. (17)

Similarly, we transform the above problem into the following:

min
M

(〈
−M(k), p(k+1)

〉
− 〈M, div q〉

)
, (18)

where

div q(k+1) =

⎛
⎜⎜⎜⎜⎜⎝
∇1q(k+1)

11 + ∇2q(k+1)
12

∇1q(k+1)
21 + ∇2q(k+1)

22

⎞
⎟⎟⎟⎟⎟⎠.

We employs the gradient descent method and obtain

M(k+1) =M(k) − τ
(
−div q(k+1) − p(k+1)

)
. (19)
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Hence, we have
M(k+1) =M(k) + τ

(
div q(k+1) + p(k+1)

)
.

Following [Esser, Zhang, Chan, 2010; Chambolle, Pock, 2011], the variables M̃(k) and Ũ(k)

in (12) and (13) can be calculated by

M̃(k+1) = 2M(k+1) − M̃(k),

Ũ(k+1) = 2U(k+1) − Ũ(k).

For the Z subproblem, the optimality condition reads

λ(Z − F) + β

(

1 − F
Z

)

+ θ
(
Z − U(k+1) − b(k)

)
.

We have
(λ + θ)

(
Z(k+1)

)2 −
(
λF − β + θU(k+1) + θb(k)

)
Z(k+1) − βF = 0.

The positive solution of Z(k+1) is given by

Z(k+1) =

(
λF − β + θU(k+1) + θb(k)

)
+

√
(
λF − β + θU(k+1) + θb(k))2 + 4(λ + θ)βF

2(λ + θ)
. (20)

The complete method is summarized in Algorithm 1.

Algorithm 1. Algorithm for Poisson noise removal

1: Initialize: ζ > 0 and τ > 0.
Ũ(0) = U(0) = F, M(0) = M̃(0) = ∇U(0), Z(0) = U(0); p(0) = q(0) = 0; k = 1

2: while
(‖U(k)−U(k−1)‖2‖U(k)‖2 < ε

) ∥∥∥∥
(
k � Nmax

)
do

3: Compute p(k+1) by (12)
4: Compute p(k+1) by (13)
5: Compute U(k+1) by (16)
6: Compute M(k+1) by (19)
7: Compute Z(k+1) by (20)
8: Update Ũ(k+1) = 2U(k+1) − Ũ(k)

9: Update M̃(k+1) = 2M(k+1) − M̃(k)

10: Update b(k+1) = b(k) +
(
U(k+1) − Z(k+1)

)

11: k = k + 1
12: end while
13: return U

4. Numerical experiments

In this section, we show some numerical results to demonstrate the performance of the proposed
model for mixed Poisson – Gaussian noise removal. In order to prove the superiority of the proposed
model, we compare our results with closely related approaches: the TV model and the TGV model.
The compared models are implemented by the state-of-the-art alternating minimization algorithm. The
standard test images are gray scale images House (256×256), Baby (256×256), Brain (256×256), and
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Woman (228×344), shown in Figure 1. We stop the iterations of all tested algorithms with tolerance ε =
= 0.0001 or Nmax = 300. Meanwhile, we take the peak signal-to-noise ratio (PSNR), and the structural
similarity index (SSIM) [Bovik, Wang, 2006] for the quantitative evaluation:

PS NR = 10 log10

⎛
⎜⎜⎜⎜⎝

2552 · MN

‖X∗ − X‖22

⎞
⎟⎟⎟⎟⎠,

S S IM
(
X, X∗

)
=

(
2μXμX∗ + c1

) (
2σX,X∗ + c2

)

(
μ2

X + μ
2
X∗ + c1

) (
σ2

X + σ
2
X∗ + c2

) ,

where X, X∗ are the clean image, the restored or observed image, respectively; M and N are the
number of image pixels in rows and columns, μX, μX∗ are the means of X, X∗, respectively; σX, σX∗
their standard deviations; σX,X∗ the covariance of two images X and X∗; c1, c2 are positive constants.

Figure 1. Test images

Empirically, all images are processed with the equivalent parameters λ = 0.4, β = 0.6 which
have given the best restoration results. The compared methods are implemented by their optimal
values. The observed images are simulated by Poisson noise with ςP, and by Gaussian noise with
standard deviation ςG. The code implementing the suggested algorithm is published on GitHub at
https://github.com/pacotha/Non-convex-TGV-for-mixed-noise-removal.

In the first simulation, we show in Figure 2 the results of compared different methods on test
images with the noisy level ςP = 120, ςG = 5. Column (a) of Figure 2 denotes corrupted images.
Meanwhile, in other columns (b–d) of Figure 2, we present the reconstruction results by the compared
methods. Besides, the local zoom-in details of original images, noisy images, and recovered results by
different models are separately shown in Figures 3, 4. The quantitative image quality assessments of
the compared approaches are also summarized in Table 1. From Figures 2–4 and Table 1, our proposed
model provides the best image restoration, visually and quantitatively, in terms of image denoising and
edge-preserving as compared to some existing related methods.

Table 1. PSNR and SSIM values for noisy images and restored images with noise level ςP = 120, ςG = 5

Image
PSNR SSIM

Noisy TV TGV Ours Noisy TV TGV Ours
House 20.4289 27.3594 27.4041 27.8068 0.4826 0.8098 0.8110 0.8216
Lena 20.4289 24.3595 24.7797 25.3585 0.4806 0.8129 0.8204 0.8315
Brain 23.6874 28.9434 29.2155 29.8371 0.6822 0.8713 0.8815 0.8968

Woman 20.2988 28.8955 29.3498 30.3706 0.4527 0.8709 0.8796 0.8957

In the second simulation, we show in Figure 5 the reconstruction results given by the compared
methods on test images with the noisy level ςP = 120, ςG = 10. Similarly, column (a) of Figure 5 shows

2023, Т. 15, № 3, С. 527–541
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Figure 2. Recovered results for the test images with ςP = 120, ςG = 5

observed images. In the other columns (b–d) of Figure 5, we show the image denoising results by the
compared methods. We also enlarge recovered results via different models in Figures 6, 7. In these
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Figure 3. The zoomed-in part of the recovered images in the second row of Figure 2

Figure 4. The zoomed-in part of the recovered images in the third row of Figure 2

Figures, we also enlarge the details of original images and observed images. Moreover, the measurable
comparisons PSNR and SSIM are detailed in Table 2.

Table 2. PSNR and SSIM values for noisy images and restored images with noise level ςP = 120, ςG = 10

Image
PSNR SSIM

Noisy TV TGV Ours Noisy TV TGV Ours
House 18.3839 24.9696 25.5657 26.1176 0.3890 0.7715 0.7737 0.7822
Lena 18.9910 23.9098 24.4881 25.0796 0.3683 0.7704 0.7847 0.7971
Brain 20.9437 26.6028 27.4125 27.8851 0.5876 0.8287 0.8508 0.8623

Woman 18.4001 28.1390 28.7557 29.1461 0.3415 0.8437 0.8584 0.8697

2023, Т. 15, № 3, С. 527–541
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Figure 5. Recovered results for the test images with ςP = 120, ςG = 10

Finally, we illustrate the capability of our methods for recovering images with the high noise
level ςP = 60, ςG = 10. The restored images by three different models are shown in the columns (b–d)

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



Image noise removal method based on nonconvex total . . . 537

Figure 6. The zoomed-in part of the recovered images in the first row of Figure 5

Figure 7. The zoomed-in part of the recovered images in the fourth row of Figure 5

of Figure 8 separately. Subsequently, Table 3 reports the measurable comparisons in terms of the PSNR
and SSIM values.

Table 3. PSNR and SSIM values for noisy images and restored images with noise level ςP = 60, ςG = 10

Image
PSNR SSIM

Noisy TV TGV Ours Noisy TV TGV Ours
House 13.8722 23.4685 23.5466 23.9332 0.2245 0.6776 0.6745 0.6845
Lena 14.3292 22.8149 23.5466 23.9222 0.2007 0.7079 0.7117 0.7203
Brain 15.8037 22.5750 24.3170 25.4661 0.4299 0.7395 0.7628 0.7792

Woman 13.9611 25.3322 25.7857 26.2747 0.1906 0.7392 0.7896 0.8001

2023, Т. 15, № 3, С. 527–541
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Figure 8. Recovered results for the test images with ςP = 60, ςG = 10

From Figures 2–8, intuitively, our proposed method has the capability of handling the staircase
effect and maintaining neat edges. Moreover, the images recovered by our method have fewer artifacts.
From Tables 1–3 our method allows for obtaining better measurable restorations then other efficient
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methods with the larger PSNR, and SSIM values. Clearly, we can see that our method outperforms the
others both in terms of restoration precision and visual quality.

5. Conclusion

In this article, we have investigated a novel variational model connected with the nonconvex
function and the total generalized variation regularization. The proposed model is to effectively
suppress the staircase effect and maintain neat contours for restoring images degraded by mixed
Poisson – Gaussian noise. To obtain the solution to the optimization problem, we employ the alternating
method of multipliers connected with the iteratively reweighted l1 algorithm. Finally, compared with
the existing well-known methods, the experiments demonstrate the efficiency of the proposed method.
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