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We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables
contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general,
these dependencies are not functions because they can have ambiguous meanings and in the functional case be non-
differentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the
condition of the original problem. All these properties make it difficult to solve both the original parametric problem and
other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as
non-differentiable optimization are used.

This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in
a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms,
based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any
parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special
parameter. Construction of proposed approximations is performed using special functions that establish feedback (within
optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for
linear problems with subsequent generalization to the nonlinear case.

From a computational point of view the construction of the approximation consists in finding the saddle point of
the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using
feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the
conditions of the Karush—Kuhn-Tucker theorem, but do not contain constraints such as inequalities and conditions of
complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly.
Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to
reduce the approximation error to an acceptable level.

Features of the practical implementation feedback function method, including estimates of the rate of convergence
to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks
searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax)
are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each
of these classes, there are demo examples.
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PaccmarpuBaeTcst kKOHEUHOMEpHAs ONTHMHU3ALMOHHASA 3a/ada, TTOCTAaHOBKA KOTOPOH, TOMHUMO HCKOMBIX MEPEMEHHBIX,
COZlep>KUT TapameTpsl. Ee pemieHue ecTh 3aBUCHMOCTH ONTHMAJIbHBIX 3HAYEHMI MEPEeMEHHBIX OT IapameTpoB. B obmem
cllydqae TaKue 3aBUCUMOCTH He SBIISIOTCS (PYHKIMSIMH, TIOCKOJIBKY MOTYT OBITH HEOJHO3HAYHBIMH, a B (D)YHKIIMOHAIEHOM CITy-
yae — ObITh HemuddepeHmpyeMeiMi. Kpome Toro, 00actTe UX CymecTBOBaHHUS MOXKET OKa3aThCs YK€ 00IaCTH ONpeIeIeHHs
(yHKIMI B YCIIOBHUH 3a/1a4d. DTH CBOMCTBA 3aTPYIHSIOT PEIICHNE KaK HCXOJHOU 3a/ladd, TaK M 3a/1a4, B IOCTAHOBKY KOTOPBIX
BXOJAT JaHHBIEC 3aBUCUMOCTH. J{JI IPEOIONeHNs STUX 3aTPyAHEHUI 0OBIYHO IPUMEHSIOTCSI METOABI THITA HeaudhepeHnupy-
€MOH ONTHMH3ALNU.

B crarbe npemaraeTcs aIbTepHATUBHBIN MTOIXO0/, MO3BOJIIIONIMH MTOTyYaTh PEIICHNs TapaMeTPHISCKUX 3a/1ad B popme,
JIMIIEHHON yKa3aHHBIX CBOHCTB. IToka3pIBaeTcs, YTO Takue MPEACTABICHUS MOTYT HCCIEIOBAaThCS CTAHJAPTHBIMHU alTOPHUT-
MaMH, OCHOBaHHBIMHU Ha (opmyne Teitnopa. [Jannas ¢popma ectb QyHKIHA, TAAKO alIPOKCHMUPYIONIAs PEIICHNE NCXOTHON
3agaun. [Ipyu 3TOM BeIMYMHA ITOTPEIIHOCTH AIIPOKCHMAIMN PETYIHPYyeTCs CleNNalbHBIM IapaMerpoM. [Ipeuiaraemble ar-
MPOKCUMAIMU CTPOSATCS C TTOMOINBIO CIEHHANbHBIX (YHKIUHA, yCTAHABIMBAIOMINX OOPATHBIE CBSI3M MEXKAY HMEPEeMEHHBIMHU
u MHOXuTenamu Jlarpamxa. IIpuBoanTCS KpaTKoe ONMHUCAHME ITOTO METOJA AN JTHHEHHBIX 3a7ad ¢ MOCIeTYIOIIM 00001e-
HHUEM Ha HeJIUHEHHbIH caydail.

[locTpoeHre anmpOKCHMAIMK CBOAUTCSA K OTHICKAaHHMIO CEUIOBOM TOYKHM MOTU(UIIMPOBAaHHOW (yHKIMHU Jlarpamxka uc-
xXomHOH 3amaun. ITokaspiBaeTCs, YTO HEOOXOAUMBIE YCIOBHUS CYIIECTBOBAaHHUS TAaKOW CEATOBONW TOUKH MOJOOHBI YCIOBHSAM
teopembl Kapyma — Kyna — Takkepa, HO He coiepaT B SIBHOM BHJE OrpaHHYEHHI THIIA HEPABEHCTB M YCIOBHUH JOIONHSIIO-
el HeXKEeCTKOCTH. DTH HEOOXOANMBIE YCIIOBHUSI AIMPOKCHMAIIUIO ONPEIEITIOT HEIBHBIM 00pa3oM. [1o3ToMy [1st BEIMHCIICHUS
ee auepeHnnaIbHBIX XapaKTePHCTHK HCTIONb3yeTCsl TEOPEMA O HESIBHBIX (DYHKIHUSX. DTa jKe TeopeMa NMpUMEHseTCs st
YMCHBIICHHUS TIOTPEITHOCTH aIlllPOKCUMAIINH.

OCOOEHHOCTH MPAaKTHYECKOW pealn3ali MeToqa (pyHKUIUH OOpaTHBIX CBA3EH, BKIIIOYAS OLEHKH CKOPOCTH CXOMMMO-
CTH K TOYHOMY PEUICHHIO, IEMOHCTPUPYIOTCS ISl HECKOIBKUX KOHKPETHBIX KIACCOB MAPaMETPUUECKUX ONTUMM3AIMOHHBIX
3amad. KOHKpeTHO: paccMaTpuBaloTCs 3a1a4K MOUCKA [I00AIBHOTO SKCTpeMyMa (DYHKIHMH MHOTHX IIEPEMEHHBIX M 3aJa4d Ha
KPAaTHBI SKCTpeMyM (MAaKCHMHH-MHUHUMAKC). Takke paccCMOTPEHBI ONTHMM3AIMOHHbIE 33a4l, BO3HUKAIONINE IIPU UCTIONb-
30BaHUU MHOTOKPHTEPHAIBHBIX MAaTEMATHIECKHX Mojenei. [ Kakaoro U3 3THUX KJIACCOB MPUBOIATCS AEMOHCTPAHOHHBIE
HpPUMEPHI.

KnrouyeBble ciioBa: 3ajaua HEIMHEHHOTO MPOrPaMMHUPOBAaHHS € TapaMeTpaMi, QyHKIOus oOpar-

HBIX CBsized, MomuduuupoBaHHas ¢yHKIus JlarpaHxka, MOMCK II00AIBHOTO AKCTpeMyMa, MUHHMAKC,
MHOTOKPHTEpHAaJIbHAS MOJICIb
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1. Introduction

Consider the problem of parametric programming;:

maximize F(x, v) with respect to x = (x|, X,, ..., xn)T e E"
for a fixed parameter vector v = (v, v,, ..., vK)T €,

1
where Y is a domain in EK, M

subject to: x € ©,: {x| fi(x, v) <O0Vi=1, m}.

The solution of problem (1) is x;, — vector dependency argmax F(x, v) on v.
x€0,

Problems of the form (1), as well as those reduced to or related to them, were considered in
a large number of both foreign and domestic studies, a detailed review of which can be found, for
example, in [M3mannos, 2006].

In addition to the parameters, in the formulation of problem (1) the presence of constraints of
type “inequality” is essential. For this reason,

— dependency scope x;, may not match the domain functions F(x, v), fi(x, v),
— dependency x; can be non-functional (ambiguous),

— dependency x, can be non-differentiable.

These properties can complicate the procedure for solving both problem (1) and other problems that
use x.

To date, a significant number of algorithms for solving parametric problems have been
developed, for example, methods of nondifferentiable optimization and sensitivity theory [Danskin,
1967; Rockafellar, 1970; dembsinoB, Bacunbes, 1981; JlembssHoB, ManozemoB, 1972; I'omemireiin, Tpe-
ThaKoB, 1989; Hypmunckui, 1991; WU3mammos, 2006]. These algorithms make it possible to overcome
computational difficulties generated by marked features of x| dependency.

However, of practical interest are also traditional methods for solving problems of the form (1),
which are based on Taylor expansions. To date, such algorithms have been proposed, for example,
in [Fiacco, McCormick, 1968; ['epmeiiep, 1969; YmuoB, 1974; denopos, 1979; Fiacco, 1983; CkapuH,
2010; YmHoB, YMHOB, 2014; YMHOB, YMHOB, 2018].

This article discusses an approach related to this direction. A method for constructing smooth
function X(r, v), approximating dependence x; is proposed. That is, a function for which the limit
equality Tl_i>r£10 F(X(t,v),v) = F(x},v), is valid ¥v € Y. In the case of unique x} this equality is

strengthened to lim0 x(t, v) = x}. In addition, the proposed approximation allows one to overcome the
T+

other above-mentioned computational difficulties arising in solving problems of the form (1).

Specifically, as x(r, v) it is suggested to use dependency on v the saddle point is modified in
a special way, the Lagrange function for problem (1). This specificity is such that X(z, v) existence,
functionality and smoothness are guaranteed: Vv € Y.

In the proposed approach the function X(r, v) is defined implicitly. However, the use of the
classical theorem on a system of implicit functions allows one to overcome this difficulty and the build
for x(r, v) Taylor approximations of the desired orders.

The procedure for modifying the Lagrange function and searching for its saddle point, called
the feedback function method, was proposed and substantiated in [YmuoB, YMHOB, 2019] for the linear
problem (1), the nonlinear case is considered in [Umnov, Umnov, 2022].

In this article, the application of the proposed approach is considered for problems reduced to
the form (1):
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— searching for the global extremum,
— finding multiple extremum and/or minimax,
— optimizations that occur when using multicriteria models.

In conclusion, we note that, in the proposed method, the smoothness of the approximation is
combined with the ability to regulate its errors by selecting the value of the instrumental parameter 7.

This allows us to apply the considered approach in combination with other methods. That is,
approximate estimates of solutions to the original problem, obtained using feedback functions, are used
as initial approximations for algorithms of alternative types.

2. Feedback function method

Let us first give a brief description of the method of feedback functions. This method can be
used for solutions both linear and non-linear problems. Therefore, it is advisable to start the description
with a simpler, linear case.

Let the functions F(x), f(x) Vi = 1, n be linear, and E” and E' be the non-negative orthants of
the Euclidean spaces E" and E™. Then problem (1) can be written in the form

n n
F(x) = Z 0 X; o max, x € EY, subject to f(x) = —f; + Z @;x; <0OVi=1,m. 2)
j=1 =1

Let us also formulate the problem dual to (2),

GA) = Zowl — min subject to g](/l) =—0;+ Za/l] ;=20Vj=1,n, 3)
i=1 i=1

where 4= (1, 4y, ..., 4,)" € E.

Let us apply, to solve problems (2) and (3), a variant of the method of smooth penalty
functions [YmHoB, 1974], which for problem (2) consists 1n sequential (in 7 — +0) maximization
over x auxiliary function A,(7, x) = F(x) — Z P(7, f(x) - Z P(r, (—x )) where the function P(t, s),

i=1 j=1
which determines the value of the “penalty” for violating the constraint s < 0, satisfies the following

conditions:

2-1°. V¥sand Y7 > 0: lim P(t, s) =

7—-+0

+o0o, s> 0,
0, s<0O.

2-2°. The function P(t, s) has continuous partial derivatives with respect to all its arguments up to and
including the second order.

2-3°. For all 7 > 0 and Vs the inequalities ‘9P >0 and f > 0! are satisfied.

Note that from 2-3° it follows uniform convergence in s Ye > 0 on sets s < —¢ and s > ¢ for limit
transitions in 2-1°.

2

if s >0,
! Note that, for example, the standard quadratic penalty function of the form P(r, 5) = 2r = does not meet these

0ifs <0
conditions.
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For problem (3), the auxiliary function subject to successive minimization will look like:

Ap(r, ) =G + Y P(x, —g;() + Y P, (=4).
i=1

=1
Let {X(1), A7)} and {¥(7), A(T)} be, respectively, stationary points of the functions A (7, x)
and A (7, A), defined for a fixed 7 > 0 by the equations

grad Ap(t, X(r)) =0 and gr;ldAD(T, A7) = o.

If we additionally assume that problems (2) and (3) have uniquely defined solutions x* =

T T
= (x’i‘, xz, e, x;kl) and ¥ = (/l’f, /13’ e /l;kn) , then the following equalities are valid:
x5 = lim x.(7) Vi=1,n, A= lim A(7) Yi=1, m,
A ! 7540 !
. . 0P — . . _ .. OP < .
A = TILIEO E(T’ fi(x())  Yi=1,m, X; = Tllgrlo s (r, =g;A(M)) Vj=1n,

since for problems (2)—(3) the components of the vector x* are the Lagrange multipliers for problem (3),
and the components of the vector A* are the Lagrange multipliers in problem (2).

In this case, Y7 > 0, in general,

oP “ — —
— (@ —g;AM) #x()Vj=1, n “

6—P(r, FEEON A VYi=1,m or
ds ! ! Jds

Relations (4) will be valid equalities only in the limit, as 7 — +0. However, formally after being
written as equalities Y1 > 0, they can be combined into one system of equations. In [YMHOB, YMHOB,
2019] it is shown that that for any (i. e., without assumptions of compatibility or unique resolvability)
linear problems (2)—(3) there are vector functions X(t) and A(t) which are solutions of a similar, unified
system of equations

1, m,

- oP —
(1) = == (. fi(x(1) Vi
®)

_ oP — _
X(0) = —(, -g;A) Yj=1n,

as
for which (in the case of compatibility of problems (2)—(3)) it holds that: lim0 F(x(r)) = lim0 G(A(1) =
T—+ T+

= F*, and if x" and A" are unique, then the following equalities hold:

)2 _ -
—(r, —g, AN Vj =T, n.

L L 0P
4 = Jim, G RGO Vi =T, 5= lim

j
Note also that system (5) does not explicitly contain conditions for the non-negativity of the components
of the vectors x(7) and A(t), because ‘;—f > () due to conditions 2-3°.

Now we use the fact that, under the assumptions made, the function %’(T, s), as a function
continuously differentiable and strictly monotonically increasing by argument s Vs € R, has an inverse
one, which is also continuously differentiable and strictly monotonically increasing by (0, +co). By

2023, T. 15, \e 5, C. el125-e1151
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virtue of which system (5) can be written as

B, + X =0, ) Vi=1,m,
{ [ X(10) = O(x, L)) Vi=1,m, h ;a‘-’x’ o 4 ¥islom

A7) = x Vji=1 . " ©
8 A@) =0 x@) V=1 n o= e =0r %) Vi=Tn,
i=1

where the function Q(r, s) = ir;v (%—?(T, s)) is an inverse function in s for g—f(‘r, s).

It follows from (6) that that the function Q(t, s) implements feedback between direct and
dual variables under optimality conditions for problems (2) and (3). In other words, modulo small
values functions Q(r, s) on the right-hand sides of equations (6) are an indicator of activity of the
corresponding constraints of problems (2) and (3) at the points x* and A*. This justifies the use of term
feedback function for Q(t, s).

Finally, the transition to the nonlinear case is performed by introducing an auxiliary function of
the form

n m n m
Ur, x, )= ) (0%, = R@ X)) + > (B, + R, 1)) = D > ayxd,, (7
=1 i=1 =1 i=1

N
where R(t, 5) = f QO(t, u)du, and the value of a(7) is found from the equation Q(r, a(7r)) = 0. This
a(T
equation Y7 > 0 Iia)s a (unique) solution, since the function Q(t, s) is strictly monotonically increasing
in s and unbounded both from below and from above Vs € (0, +0).
Due to (7), the solutions of system (6), that is, the vectors x(7) and A(1) are the stationary
points of the function U(t, x, A) in total {x; A}, and the function (7) itself can be represented as some
modification of the Lagrange function [l'onpmreita, Tpetbskos, 1989; XKaman, 2015]

UGr, x, ) = L(x, ) = ) R(, x))+ > R(x, A), )
j=1 i=1

where L(x, A) is a regular Lagrange function of problem (2) of the form

n m n
L(x, 1) = ZO'jxj — Z/li [—ﬁi + Zaijxj
=1 i=1 =1

This form of writing the Lagrange function for problem (2) does not depend on whether the
functions F(x), f.(x) Vi = 1, m are linear or not. Therefore, equality (8) can be used as a definition of
an auxiliary function U(r, x, 4, v) for the nonlinear problem (1).

= F(x) = ) 1.
i=1

3. Smoothing property of feedback functions

Consider the applicability conditions for feedback functions to solve the parametric problem (1)
with a constrained value F; and with maybe ambiguous dot xj. We will assume that all the conditions
formulated below are satisfied: Vv € Y.

Suppose that in the problem under consideration the Lagrange function is regular. Also, let there
be compact sets Q, C E" and Q, C E™ with non-empty interior, for which there is at least one pair of
vectors xj € Q and A; € Q , such that L(x}, 4}, v) = F;.

Let the function feedback Q(t, s) be defined Y7 > 0 and Vs € (0, +0). By construction, it has
the following properties:
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Using feedback functions to solve parametric programming . . . ell31

3-1°. QO(x, s) is strictly monotonically increasing in s and has for any fixed 7 > 0 lim0 O(t, 5) = —o0,
s—+

lim Q(t, 5) = +o0o0.

§—+00

: +oo, s<0, o e .
3-2°. Vs > 0 and V7 > 0: lim Q(t, s) = and this limit transitions is uniform in s
7—+0 0, s> 0,

for (—oo, —g;] and [g,, +o0) Vg, > 0.

3-3°. In the domain of definition the function Q(r, s) is continuously differentiable with respect to all
its arguments.

As feedback functions, one can use, for example, Q(7, s) = tlns, O(7, 5) = 5 (s - l).

N

N
Let’s introduce Vs € (0, +o0) a function R(r, s) such that R(t, s) = f O(t, u)du, where a(7) is
a(T)
the solution to the equation Q(r, @(r)) = 0 (under the assumptions made, «a(7r) exists and
uniquely Y7 > 0). From the definition of R(7, s) it also follows that %—Ij = Q(t, ).
Taking formula (8) as the definition, we construct for the nonlinear problem (1), supplemented
by the condition x € E”}, the auxiliary function

UGt x, 4, v) = L(x, 4, )+ W(T, x, ), where W(r, x, ) == > R, x)+ > Rx 1). (9
j=1 i=1

Suppose that in problem (1) non-negativity conditions are not imposed on all components of the
vector x, or among the restrictions there are equalities. Then into expression (9) for W(t, x, 1) the
m

corresponding terms are not included. For example, for problem (1) W(z, x, 1) = ¥ R(7, 4,).
i=1

We now describe the properties of the function U(t, x, ).
It is shown in [Umnov, Umnov, 2022] that under the above assumptions and a fixed vector of
parameters the following statements hold.

Theorem 1. VY7 > 0 function U(t, X, A, v) has {X(z, v); A1, )}, a locally isolated saddle point
inside QX Q,, where vectors X(t, v) and A(t, v) are solutions of the system of equations

grad U(r, X, 1, v) = o,
X

_ = (10)
grad U(t, X, 4, v) = 0.
b
For example, for problem (1), the system of equations (10) has the form
OF ~<-= af;
= —Zzi(r, v)i =0 Vj=1,n,
0x; i=1 axj (1n

fiG(r, v)) = =0(x, Z(T, v) Vi=1,m,

This form is similar in structure to the conditions of the Karush-Kuhn-Tucker theorem for
problem (1), but does not contain explicit conditions for non-negativity of the Lagrange multipliers
and conditions of complementary slackness.

Notice, that the vector functions X(t, v), A(t, v) defined implicitly by system (10) describe
in Q, x Q, parametrically (by 7) a line which (by analogy with the extremal trajectory in the penalty
function method) can be called the saddle trajectory of the problem (1).

2023, T. 15, \e 5, C. el125-e1151
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Theorem 2. On the saddle trajectory of the problem (1)

lim U(z, X(, ), At, v), v) = F}, (12)
T+
In the case of local uniqueness solution of the problem (1) the equalities are also valid

lim X(t, v) = x* and lim A(r, v) = (13)

T—=+0 7—=+0

Theorem 3. On a saddle trajectory, the vector functions {x(t, v); AT, v)} are continuously
differentiable with respect to all its arguments ¥t > 0 Yv € Y.

We find from (10) for specific 7 > 0 and v € T values of the vector functions x(t, v), AT, V).
Then we apply to the system (10) the implicit function theorem, which gives ¥r = 1, K system of linear
equations

o*U Ox; *U dr, PU vo=TT
= Bxp 6x Bvr P axp 04, 0v, B dx, Ov, B
. _ (14)
9*U 0x; PU oA, U —
a = vq = 1’ )

8/1 6x Bvr P 0,04, 0v, 04, 0v,

This system determines the values of the derivatives of the vector-function components x(t, v)
and A(t, v) over the components of the vector v.

If necessary, we strengthen the assumptions in an obvious way about the properties of feedback
functions, as well as functions included in the condition of problem (1). As a result, we can find partial
derivatives of a higher order in a similar way.

Theorems 1, 2 and 3 allow us to use the vector function X(t, v) as an approximation of the
dependence xj, having no properties preventing the use of computational procedures based on the
Taylor formula.

It follows from Theorem 2 that the error of the feedback function method decreases as 7 — +0.
However, if for the value used 7 it is unacceptably large, it is also possible to apply the implicit function
theorem to reduce the approximation error.

Indeed, if the right-hand sides of the system (14) are replaced by — ax 6‘1‘ and — a T a , then its

solutions will be the values of the derivatives of {X(t, v), A(t, v)} by the T parameter. These values
of these derivatives for sufficiently small 7 > 0 improve the approximation accuracy, for example,
according to the formulas

=X -1—2Vj=T,n and A, =11 v)-1— Vi=T1, m. (15)

It is shown in [Umnov, Umnov, 2022] that although the point {X, A} does not belong to the saddle
trajectory, correction by formulas (15) can be performed iteratively in several steps. To do this, it
suffices to replace the scalar parameter T with the vector parameter by turning the saddle trajectory into
a bundle of such trajectories.

We illustrate the application of the method of feedback functions by solving the following
problem, with non-negative fixed p.

Problem 1.
maximize px over x € R

16
subject to: x 2 0, x <5, x < 5v for fixed v € R. (16)
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Solutions to this problem in the case of p > 0 and, accordingly, p = 0 look like

does not exist for —oo <v <0, does not exist for —oo <v <0,
X, = 5v forO<v<l, X, = [0, 5v] forO<v<l,
5 forv>1, [0, 5] forv>1.

In other words, for v < 0 x;, dependency is not defined, at the point v = 1 the derivative of xj, does not
exist, and for p = 0 for v > 0 x| dependency is ambiguous, and therefore is not a function.

Let us construct a smooth approximation xj dependencies for 1 task, taking Q(r, s) = Tln s as
a feedback function. The auxiliary function (9) in this case will be

Ur, x, 4}, 5, A3, v) = px — 4;(=x) = ,(=5 + x) = 3(=5v + x) + R(7, 1)) + R(7, 1)) + R(7, 1)).
Conditions for its stationarity (system (10)) will be
p+zl —22—53 :0,
T+7lnd; =0,

~X+5+7Ind, =0,

~X+5v+7Iny = 0.

X, v) A
5 G| H
4 //
=03
_ 506
3 / T —2(;1\\
¢l Db r=00s=__ | | ) <
2 // | 2.4 7 =10
177 23 / =

1/ 22 /

0 /)
2.1 /

F/ 08 09 1 1.1 12 13 14
(a) (b)

Figure 1. Graphical representation of functions x(z, v) for problem 1

<Y

Omitting the obvious transformations, we present the final form of the desired x;, dependency

approximations:
2
_ p _3 _» p
xX(t, v) = —7ln —t+eTt+e T —=|
(T, v) ( 7 2)

This function is defined ¥7 > 0 and Vv € R and has a derivative of any order at each point. Disclosure

of uncertainties in the case p > 0 gives lim x(r, v) =5vat0<v <1 and lim X(r, v)=5atv> 1.
7—=+0 T—=+0
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Now we find the values of the limit lim0 x(t, v) = x}, for v for which x} is defined ambiguously.
T+

With p=0and 0 < v < 1 we have

. | 5 s 1 . s sv-5
lim x(t, v) = —= lim Tln(e T +e r): —— lim (Tlne T +Tln(1 +e T ))z —.
7—+0 2 740 7—+0

For v > 1 the result is lim x(t, v) = % obtained similarly.
T—=+0

Next, we note that problem 1 is inconsistent Yv < 0 due to inconsistency restrictions x > 0

and x < 5v. In this case we have limo x(t, v) = % This value can be considered as some compromise
T+

for conflicting conditions.

Figure 1, a shows the graphs of the functions x(r, v) for r = 1, 0.6, 0.3, 0.1, 0.025. Figure 1, b
shows on a larger scale the same graphs in the vicinity of the point v = 1, where the dependence xj, is
non-differentiable.

4. Extremum of a function of several variables

Let us now consider the possibility of applying the method feedback functions in tasks which
are reduced to problems of parametric programming.

Let us first show that approximations of solutions using feedback functions can be used to solve
the problem of finding the maximum number in some finite set of numbers.

Let a set of numbers be given v = T R L The value of the maximum of them is the

solution linear programming problems with scalar variable f € R and with parameters v,, v,, ..., vg:
minimize f

17)

subject to: f >v;Vi=1, K.

Taking into account the problem statement format (1) and taking into account that f is not limited in
sign, we build for this task auxiliary function (10)

K K
U, f, 4, v) = —f = > 40— )+ ) R A). (18)
i=1 i=1

If we take as the feedback function Q(t, s) = 7ln s, then the stationarity conditions for (10) will look
like

K - i
—1+>°,=0, = ¥i=L K
- = K (19)
- — here 7 = 71 :
v—Ff=t A Vi=T, K Weref”n;e '
Consequently, the solution of problem (17), that is, the value of the maximum (as well as the minimum)
of the numbers in the set {v, v,, ..., v} will be equal to
K V. K V.
fonws = lim 7ln [Z} e ) = fp =~ lim 7ln [Z; e ) (20)

Let the passage to the limit in (20) not be performed, and let 7 be a small positive number. Let
us estimate the order of error of the obtained estimates. Without loss of generality, we can assume that
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the numbers in the set L R e sorted in descending order and the first M of them are equal
to f*, where {v,, v,, ..., v}. Then we have

K K . K .
— . v, 7 v v f
f(T)—f*:Tln[Ze?)—TlneT:Tln[Z e v ]zrln[M+Ze T )<
i=1 i=M+1 i=1
K-M ar
<71n(M+(K—M)e’4):ﬂnM+Tln(1+ y eArf)<ﬂnM+Te’%,

where A = IUPRE

It follows from this estimate that the order of smallness of the error is determined by the
term 71In M in the case when M > 1 (that is, in the set under study the maximum number is not unique).

. . A-f* S
For M =1, the order of error is determined by the term e =, which is much better at 7 — +0.

The fact that the solution in the form (20) has been obtained for system (19) is, of course, an
exception, not a rule. For example, if one uses the feedback function Q(r, s) = %(s - %), then the
system of equations (10) will have the form

i=1 (21)

for which only a numerical solution is possible.

For illustration Table 1 shows the results of solving system (19) for a set of numbers
vi=5v,=-2,vs=4v,=7, v5s=0}
with different values of the T parameter.

Table 1. Solutions of system (19) for various values of the parameter 7

T f@ A,(7) (1) A3(7) A,(7) A5(7)
107000 |1/ 7.170719212 | 0.114095529 | 1.0404 - 10~* | 0.041973399 | 0.843058261 | 7.6877-10~*
107025 || 7.018454440 | 0.027615558 | 1.0841-1077 | 4.6651-1073 | 0.967715479 | 3.7990-107°
10700 |1 7.000590038 | 1.7884-1073 | 4.355-10"" | 7.5703-107° | 0.998135874 | 2.430- 10710
107075 || 7.000002329 | 1.3048-107 | 4.355-10"" | 4.7135-107% | 0.999986904 | 0.000000000
107190 1/ 7.000000000 | 2.0612-107° | 0.000000000 | 9.358-10~'* | 0.999999998 | 0.000000000
10125 || 7.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 1.000000000 | 0.000000000

For comparison, Table 2 presents numerical solutions of system (21) for a set of numbers {v, =5,
v, =5,v3=4,v,=5,vs =0} also with different values of the 7 parameter.

Consider now the problem of finding extreme values for numerical sets of cardinality continuum.

Suppose we are given a function f(x) continuous on a compact Q C E”. Replacing the summation
operation by integration in formula (20), we obtain an estimate for the value of global maximum of
a function of several variables

@

e dx. (22)

. .
JSmax = lim 7ln
7—+0
Q
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Table 2. Solutions of system (21) for various values of the parameter 7

T f@ (1) (1) (1) 2,(1) A5(1)
107190 1| 5109862742 | 0.333328289 | 0.333328289 | 1.5133-107° | 0.333328289 | 0.000000000
107520 || 5069317752 | 0.333333319 | 0.333333319 | 4.3629-10~% | 0.333333319 | 0.000000000
107150 || 5.034741173 | 0.333333333 | 0.333333333 | 0.000000000 | 0.333333333 | 0.000000000
10729 || 5010986124 | 0.333333333 | 0.333333333 | 0.000000000 | 0.333333333 | 0.000000000
10749 || 5.000109861 | 0.333333333 | 0.333333333 | 0.000000000 | 0.333333333 | 0.000000000
10779 || 5000000110 | 0.333333333 | 0.333333333 | 0.000000000 | 0.333333333 | 0.000000000

The validity of formula (22) follows from conditions f(x)

lim 7ln f
T—=+0

< f* and estimates:

s r 11" f@-f*
fdx—hmTlnerfe dx—f+11rnrlnf T

7—+0 7—+0
Q Q Q
. f-f* .
OL< Iimrtln | e = dx< lim tlnmesQ = 0.
7—+0 7—>+0
Q

Relationship of integration operations and extremum search was previously used to solve
problems of different classes. For example, in the saddle-point method, described in [®enoprok, 1977],
or when searching for a maximin in game problems [®enopos, 1979].

The following example illustrates the application of formula (22).

Problem 2. Find global extremes by x € Q C E? for the function f(x) =
{—3 <x <4,

lx, | + [x,|, where Q =

< X
-2<x, <L

Solution. For the global maximum, we have:

¥y \+\A |
S = lim 7ln f f ~+ dx, dx, = lim tln|7

7—-+0

4 3 2 1
(e? +ev —2)(6? +e7 —2)] = 6.

It is achieved at the boundary of Q region at x, = 4 and x, = 2.
The global minimum here is internal, at the point x; = x, =0

il
foin = — lim 7ln ff - dx,dx, = — lim 7ln z(e_% tet - 2)(6_% tet - 2)] =0.

7—=+0 T—=+0
Note also that the optimal value of the objective function in the problem of mathematical
programming

maximize F(x), x € E"
subject to x € Q C E"

can be represented (under appropriate assumptions about the properties of F(x) and Q) as F* =

. FQ)
= hmTlnfer dx.
T—=+0 I

5. Multiple extremum and minimax problems

Smoothed dependency estimates for solutions to parametric programming problems can also be
useful for studying the properties of superpositions of extremum search operators. Note that a similar
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approach based on the use of external penalty functions was proposed in [I'epmeitep, 1969] and
substantiated in [®emopos, 1979].

Consider the following minimax problem:

minimize F(x) in x
(23)

subject to x € Q, where Q C E"is compact and F(x) = krr[lla)lc( ]{ f (0}
e[l,
We also assume that the functions f, (x) Yk € [1, K] are continuously differentiable on the set €.

In the case where the set Q is given by a system of inequalities of the form y.(x) <0, i = [1, m],
problem (23) is equivalent to the problem of mathematical programming:

maximize —V by {x, V}

24
subject to fi(x) =V < 0Vk=[1, K] and y;(x) <0 Vi=[1, m]. 24)

Here we also assume that the functions y,(x) ¥i € [1, m] are continuously differentiable on the set Q.

Dependence V; under the above assumptions is continuous but non-differentiable throughout
its domain of definition. To solve problem (24), we apply the method of feedback functions with an
auxiliary function

K m K m
U, x, A, V)= =V =Y LG = V)= Dy 0+ > R@ )+ Y R, ), (25)
k=1 k=1 k=1

i=1

where A = A oo Ao s oo M)

Stationarity conditions for the function (25) can be written as a system of equations:

K m
DA grad f@ + Y- grad @) = o,
k=1 * i=1 *

- @®+V+0( )=0 Vk=1K,
@+ Q. H)=0 Yi=1,m,

K
—1+Z§k=0.
k=1

Let the problem of minimax search has no constraints, and the feedback function is defined
as O(t, s) = tlns. In this case, the stationarity conditions for the auxiliary function are simplified

(26)

k=1

— f,)-V -

L =e + Vk=1 K, 27)
K f—

-1+ Z k= 0
k=1

Note that the last two equalities give a smoothed approximation of the function maximum V(x) =
K 5w —
=7ln ) ekT, whereas, the first two equalities in (27) are necessary conditions for stationarity for V(x)
k=1
over X.
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As illustrative examples, consider two problems.

Problem 3. Find the minimum for V(x) = max {xZ; sin 4x}.

Solution. This problem is reduced to the problem of mathematical programming

maximize —V by {x, V}

subject to x* —V <0, sindx — V < 0.

Using (27) we find that the approximation of the maximum function has the form

— 2 sin4x
V(x) = Tln(eT +e T ),

Its stationary points are the roots of the equation

_ 2 sin 4% _

Xet™ +2e 7 cosdx =0.
Equation (29) has three roots, which are approximations to the points

Xi=0, x5= % =0.392699082 and x} = 0.669283188,

2

The last one is the root of the equation x~ = sin4x.

(28)

(29)

Solutions of equation (29) for different values of the 7 parameter are given in Table 3, and the

graphs of the function V(x) are shown in Fig. 2.

Table 3. Solutions of equation (29) for various values of the parameter T

T X, (1) X, (1) x3(7)
0.50 —0.166596357 | 0.413732397 | 0.723794952
0.25 —0.124388280 | 0.398475953 | 0.704617207
0.10 —0.077449382 | 0.392845484 | 0.688202392
0.05 —0.046509302 | 0.392699415 | 0.679216477
Exact solution 0 0.392699082 | 0.669283188

As a second illustration, consider the minimax problem, arising in the process of searching using
the method of dichotomy of the extremum of the function of n variables in a given direction to E".

Suppose we are given a continuous, unimodal function f(x) (that is, having a single extremum
on segment [a, B]). It is required to find on this segment two points the values of f(x) in which allow

us to build a new segment minimum possible length containing the extremum point.

Let’s denote the required points by x, and x,. Then it follows from the properties of unimodality

that these points are the solution to the following problem:

Problem 4. Find minimum by {xs xz}for max{x, —a, - x,} subject to X, < X,

Solution. This minimax problem reduces to parametric programming problem of the form

Jind maximum —v by {v, x|, x,}

subject to x, —a < v, B—x, <V, x; —x, < 0.

The auxiliary function (10) for this problem look like

U, x, 4, v)=—v—=A4(x; —a—v) = 4L,(B—x; —v)— 43(x; —x,) + R(7, 1)) + R(7, 1,) + R(7, A3).
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A V(x)
Y

2
T =
0.75
05—\ 3
0.3 1
0.15
0.01

-1 0 1 x

Figure 2. Graphical interpretation of problem 3

The stationarity conditions for v, x,, x,, 4,, 4, and 1, with feedback function Q(7, s) = 7ln s are

_1+zl+22:0,
12_13:0,
~%, +a+v+7in(l) =0,

—B+X +v+71In(d,) =0,

~ X, +%, +7In(1;) = 0.

X,-a —X+p

From (30) we get v = 7ln (éT +e T ) and X, — X; = 7In2 > 0, which gives for Vi,

X, — —x, +B

the approximation ¥(7, x,) = 7ln (2617& + eT). The plot of this approximation is shown for the
parameter values @ = 1, 8 =5 and 7 = 0.5, 0.2, 0.01 in Fig. 3, a.

To take into account the limitation x; < x, we can use any sufficiently smooth penalty function.
This allows us to obtain an approximation of two-dimensional dependence v, . The type of isoline

system for such an approximation with @ = =5, 8 = 11 and 7 = 0.05 is shown in Fig. 3, b.
6. Using feedback functions in problems for multiobjective models

From the above, it follows that a function approximating x} dependency can be explicitly found
only in exceptional cases. However, often it turns out that it is sufficient to construct only its Taylor
polynomial. That is, it is enough to be able to calculate for Yv € Y both values of the approximating
function x(7, v) and its partial derivatives up to some order.

Let us show that the method of feedback functions is applicable in solving parametric
optimization problems in multicriteria mathematical models.
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5 x2 104

v(0.5, x,) //
v(0.2, x,) 3 g
v(0.01, x,) /

v(T, X5 X,)
(a) (b)

Figure 3. Graphical representation of smoothed approximations for the problem 4

As is well known, in mathematical modeling, in the formation of quality criteria for the states
of the object being modeled, several objective functions independent of each other may arise. Let’s
assume that there are also restrictions on the arguments of these objective functions.

In this article the term multiobjective model means the set of functions to be maximized with
respect to x € E", also depending on the parameter vector v € € EX

F(x,v) Yk=T,N, 31)

subject to

fix,v) <0 Vi=1,m. (32)
We will also assume that all functions F,(x, v) and fi(x, v) are twice continuously differentiable.

Naturally, various optimization problems may arise, when multicriteria models are used in the
process of making managerial decisions.

Indeed, the simultaneous achievement by all objective functions (31) of extrema at some point of
the set defined by the system of inequalities (32), is generally impossible. Therefore, problems whose
solutions are, in a way, a compromise for a set of criteria (31) are useful.

As a basis for constructing a compromise one can use solutions of single-criteria problems of

the form

maximize F,(x, v) in x € E"
_ (33)
subject to fi(x, v) <OVi=1, m.

The solution to each of these problems (Vector x’(“k)v and number F Ekk)v =F, (x’(*k)v, v)) Vk =1, N is the
best state of the model (31)—(32) from the point of view of the kth criterion. Consider the case where
the problem of determining the compromise state is to find a valid point x};* which is the extremum of

some value of the “compromise quality”.

This value can be minimum by x, satisfying the constraints (32), maximum from
differences Fy,, — F; (x}*, v) Yk = 1, N, that is, the solution to the problem

maximize —p in {x € E"; p > 0} 34
subject to fi(x, v) <O0Vi=1,m, F(*k)v - F(x,v)-p<O0Vk=1,N.
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*

We denote the solutions of the parametric programming problem (34) as p}* and x}*. Note that
the dependence value p;* can be interpreted as a measure inconsistency system of objective functions
in the multicriteria model (31)—(32).

For brevity, in what follows we will call problems (33) problems of the first level, and
problem (34), that of searching for a compromise state multicriteria model x*, will be called the
problem of the second level.

The well-known methods [JIoto, [Tocmenoa, 2008] in the practice of mathematical modeling
are: objective function convolution methods (31), methods of searching for Pareto equilibrium, and
ideal point methods.

Note that the minimax value of the quantity p, as a solution to problem (34), is some dependence
on the parameter vector v. This dependence has the above-mentioned features that complicate the
solution of optimization problems, in which it is included.

Finally, it also seems natural to formulate, for the model (31)-(32), an optimization problem of
the third level, for example, the following:

find extremum p’* inve Y C EX, (35)

EETS

The solution to this problem is the vector v
extremum in problem (34).

€ T and number p** = p7i., that is, the minimax

Implementation of the algorithm for solving problems of optimization problems for
multicriteria models

One of the reasons for the computational difficulties in solving problem (35) is the use of p;*
dependencies in its statement. To overcome them we apply the method of feedback functions, which
allows us to build the function p(7, v), a smooth approximation of dependence pj*.

Suppose that a method of the second order is used to find a local solution of problem (35). Then
it is enough have values p(t, v) and all its partial derivatives up to and including the second order.

According to Section 3, the values p(t, v) are found from the stationarity conditions for the
auxiliary function (10). The values of derivatives can be calculated using the implicit function theorem
applied to these stationarity conditions.

Let’s consider this approach in more detail.

We first note that the dependency p;* is a solution to problem (34), whose statement contains

non-smooth dependencies kav Yk = 1, N — solutions of problems (33). Therefore, we will use the
smoothing property of the method of feedback functions not only when solving problems of the second
level (34), but also for problems (33).

The auxiliary function for the kth problem of the first level (33) looks like
Upm, %, A v) = Fi(n v) = Y A v) + > R(T, A). (36)
i=1 i=1

Stationarity conditions for the function (36) have the form

Y io wp=Tn m
glxjp - p=1Ln, . grfd F, (f(k), V) - ; Ao gr;ldfl. (}(k), v) = o, )
6—%{‘:0 Vi=1,m — £ (R V) + (7. Apys) =0 Vi=T m.
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The solution of system (37) allows us to construct the function

Ugy(r, v) = U (T’ X (T, V), A (T, V), v). (38)

This smooth function can be used as an approximation for dependencies F7, v in the condition if the
problem of the second level (34).

Applying the theorem on a system of functions given implicitly to the stationarity conditions for

the auxiliary function (36) gives a system of linear equations similar to system (??) for derivatives of
the functions X(7, v) and A(t, v) by v, Vt =1, k

" QPU, Ox, & GPU, 04, U,
R e AR LT
4 0xp, Oxy Bv 4 0x, 0 Bv axp ov,
(39)
" QPU, 0%, & 8*U, 91,  8*U,
A
04, 0x, av, 04,04, av, a/ll. ov,

The main matrix of the system of linear equations (38) is the Hessian matrix for the auxiliary

function (36), whose elements, as well as the components of the column of the right-hand sides, are
calculated at a stationary point {E(k)(r, V), Agy(T, v)}.

We now apply the method of feedback functions to solve the problem of the second level (34).
Let us write the condition of this problem in a form that is more convenient for constructing the
auxiliary function by introducing the functions Y, (o, x, v) = U, (7, v) — F(x, v) —p Yk = 1, N. Then

the condition of the problem of the second level takes the form

maximize —p in {x € E"; p > 0}
subject to fi(x,v) <OVi=1,m, Y, (o, x,v) <OVk=1, N.

The auxiliary function (10) for this problem of the second level looks like
m N m N
U, p, % A 1, v) = =p= ) A5 v) = > ¥, (p, x, ) =R(x, p)+ > R(t, )+ > R(T, ). (40)
i=1 k=1 i=1 k=1

The stationarity conditions for this function have the form

U _, N

o —1+Zﬁk—Q(T,ﬁ)=0

ou - =l

ox, 0 Vi=bn n = o

6U] or —Zi,ax(x V) — Zua—k o, x,v)=0 Vj=1,n, 41)
— =0 Vi=1,m, =1 J J

0A.

where {;:), X, i ﬁ} is a stationary point of the auxiliary function (40).
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Applying the implicit function theorem to the stationarity conditions for the auxiliary
function (40) gives a system of linear equations similar to system (14):

dp* Ov, &4 dpox; Oy, H Opddy Ov, L Op oy I, - Opdv,

PU_0p N U %, QU 0, PU gy PU -
0x, 0p v, = dxp, Ox; 8vt — dx, 04, av, —! Ox, Oy I, ~ 9x, 0, p==r
PU B <n _PU T 58U @J”ZN: PU I, U T
0. 0p dv, 04;0x; dv, = 04,04, dv, & 04, 0y Iv, © A0y, S
PU G PU T 2 PU 0y S PU Gy PU
O Op Ov, Oug 0x . Ov Ops 04, O, Opg Oy, v, O 0v, S

(42)

Its solutions are the partial derivatives of the functions {;:), X, i ﬁ} with respect to the parameter v,
V=1, k.

Here we note that, the implicit function theorem is also applicable to calculate the derivatives

of {/:), X, A, ﬁ} with respect to the 7 parameter. The values of these derivatives can be used in

extrapolation procedures (see, for example, [Umnov, Umnov, 2022]) to reduce the error of the smoothed
approximation by the formulas

_ L o a1,
szxj(T,v)—TFV]:Ln and /liI/li(T,V)—TEVZILm.

Let us now consider the problem of the third level. As a smooth approximation of the
dependence p;* choose a function

U(r, v) = U(t, p(1, v), X(1, V), A, v), AT, v), v). (43)

According to the rule of differentiation of a complex function, the partial derivative of ﬁ with respect
to v, has the form
aU oU aU ap Z U 6x 5 OU 8/1 Z oU 6,uk

av, 8vt p av, ox; 8v 8/1 8v 4 O, v,

":II

All partial derivatives of the function ﬁ in this formula are calculated at the point {, /:), T A,
Therefore, by virtue of equalities (41), the expression for the derivative simplifies to

6U6

—(7, p('r V), x(’r V), /l(T V), ,u(T v),Vv) Vt= 1, K. (44)
avt ov

t
Thus, when solving a problem of the third level by any first-order method, it is sufficient to be able
to find solutions to systems (37) and (41) V¥v € Y. The final error is determined by the value of the 7
parameter.

In the case of using second-order methods, we will also need the values of the second derivatives
of the approximating function (43). Direct differentiation of formula (44) in view of (41) gives

PU U aZUapZaUaimaZUa_i”aZUa_ﬁk
?

= ,t=1,K. (45
ovgdv,  0Ovs0v, Bv Op Ov, Vg Bx ov, — v 04, v, +j:1 v, Oy, v, s (45)

Whence it follows that in this case the linear system (42) needs to be solved as well.
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Ilustrative example

The use of feedback functions to solve a three-level optimization parametric problem is illustrated
by the following example.
Although this example is relatively simple, it demonstrates quite well the features of parametric
optimization problems for multicriteria mathematical models.
Suppose that the objective functions of the model that are to be maximized with respect to x € E3
with v € E? look like
Fi(x,v)=x;, Fy(x,v)=x,, F3x v)=ux;.
The set of feasible states of the model is given by the system of inequalities
X0 X X
x 20, x>0, x>0, L2 3 L.
vpov, A-v -,
Finally, the set T is defined as
l<vi<B, 1<v,<B, 2vi+v,2C,

where A=11, B=5and C =7.
For the considered model, the number of objective functions is equal to K = 3. The problems of
the first level look like

_ - _ . 3
Yk =1, 2, 3 maximize F(k) = Xy in X € E

x X X
. (01 (k)2 k)3
subject 10 x4y 2 0, X405 2 0, x93 20, Liwal e —

1 2

To solve these problems, we choose the feedback function Q(7, s) = 3 (s - %) and, by virtue of

condition (9), R(t, s) = %(%2 —Ins— %) Then the auxiliary function (36) for these problems can be
written as

X X X
w1, Fwe ®3 1) ~
v, vy A - V=V,

=R (7, %01) = R (7 x02) = R (7, x08) + R (7, Age)- (46)

Uy (6 v) = X = Ay (

The conditions for its stationarity are

6/(1 - = Q(T, x(k)l) = 0,
1
1
*) _
O = 7= 0(r. Tup) =0,
? (47)
5y - — W ~ (1. Tp) = 0
k3 A_Vl_Vz > (k)3 >
X X X _
W2 O 1-9(n Ay =0.
% v, A— V=V,

1

In turn, the solutions of system (47) allow us to find the values of the functions (38), which in
the example under consideration are determined by the formulas following from (46) and (47)

U (T, v) = X1 V)=
= R(7. Ty (1. 1)) = R (7. T (7. V) = R (7. T (. ) + R (7. Agy) = Ay @ (7. Ay ). (48)
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The components of their gradients over v are:

gy AgXan A X3 W _ AwXwe  AwXws

v, v A-v —v)? dy, v Ay -,

Vk=T,K. (49

Let us now apply the method of feedback functions to solve the problem of the second level.

*

In the formulation of this problem, instead of dependencies F (v We use their smoothed

approximations ﬁ(k)(r, v, v,) Yk = 1,2, 3. Then the statement of the problem of the second level
for the model under consideration takes the form

maximize — p
subject top >0, x; 20, x, 20, x; >0,
X, X X
de2 3«
Vv, A-vi-v, (50)

Uy (T, vy, vy) =3 = p <

bl

0
0,
0

N

p
Ut v, vp) =% —p
Iel

5(3)(‘1', Vi, V2) - X3~ < 0.
The auxiliary function for the second level problem is
XX, X,
Ur,p, x, Ly=—p—-A|l—+ =+ ——— - 1| -
v, v, A-v -v,
—H (ﬁ(l)(T’ Vis V) — X _P) T (U(Z)(T’ Vis V2) = X _P) ~H (ﬁ@(ﬁ Vis Vp) — X3 _P) -
—R(7, p) = R(z, x|) — R(7, x,) — R(7, x3) + R(1, 1) + R(7, ;) + R(7, ) + R(7, p3),
where A and p = {u,, u,, pu;} are the Lagrange multipliers of the last four restrictions in (50).
Whence the conditions that determine its stationary points are

oU

— =0, = = = =

dp —l+u +p+us— 0, p) =0,

ou =

—_— :O’ /1 = =

Ox, —V—+,U1_Q(T, x) =0,

au !

— -, T _

axz - —+up -0, x,) =0,

ouU o 1)

P w R 0w =0 (51)
ou A-v —v, 3 3 ’
a0 - _

L L2 B -0 D=0,
8,ul_ ) Vi v, A-v -,

aU _ 0 U(l)(T, vla Vz) _}1 _ﬁ_ Q(T’ ﬁ]) = 0’
Oty ’ ﬁ(z)(T, Vi, V) =X —p = Q7 pip) =0,
a_U =0 6(3)(7', Vi, Vz) —}3 —[_-)— Q(T, /_13) =0.
Oy
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Having obtained solutions of system (51), we can construct a smoothing approximation for
the dependence p;*, which is used in the statement for the problem of the third level. As such an

approximation, we use the function

Tz, v) = U(r, 5(r, v), X1, v), AT, v), 7T v)) =

= 510t D)~ 1,0(t. [iy) - L O(T. fiy) — 1307 Tiy) — R(7. §) — R(t, %) — R(t, %) — R(7, T3)+

+R(1, D) + R(7, Iy) + R(7, @) + R(z, [13),

the partial derivatives of which, according to (44), are

== - 5 — 1 — 1, — :
v, vi (A-v,—v) av, v, av, 52)
ou _ Ix, A%y = 0U, = 0Uy = 3dUg
v, 2 A—v, —v HiTe THT TG
2 2 1 2 2 2 2

where the values of the partial derivatives on the right-hand sides are determined from (49).

In conclusion, we consider a variant of the third level problem:

find local extreme values of dependence p:* in the case where the set X' C E? is determined by the

I<v <5,
system of inequalities { 1 < v, <5,

v +vy, 27

Geometrically, this problem admits the following interpretation: it is required to find parameter
values that optimize (according to the size of the criteria mismatch) the form of the Pareto set of the

considered multicriteria model.

The contour system and the spatial graph function —ﬁ(vl, v,), which is an approximation of the

dependence p;*, are shown in Fig. 4.

_ﬁ(Ta V1 s vz)

Figure 4. Contour system and 3d function graph for —ﬁ(‘r, Vs V,)
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To search for the maximum in the problem of the third level the steepest ascent method has been
applied. As a direction vector w, the normalized gradient of the function —U was used. The step value
in this direction was estimated from the condition of reaching a maximum along w.

The main quantitative characteristics for several initial iterations of the solution process with 7 =
= 0.01 are given in Table 4. The exact solution of the third level problem (local maximum search) in

this example (point 6 in Fig. 4) has the form

Sk

Y1

11

EES
’ V2

kK
Poer =

22

R

Table 4. Solving the problem of the third level to the maximum

Point in Fig. 4 v, v, -U Grad. norm w, w, Step
1 4.000000000 | 2.500000000 | 2.292876919 | 0.292812466 | 0.117759800 |0.993042109 | 0.925000000
2 4.108927815 | 3.418563950 | 2.427442369 | 0.070259924 | —0.993862751 | 0.110620212 | 0.360000000
3 3.751137224 | 3.458387226 | 2.440214361 | 0.041937320 | 0.104185521 |0.994557880 | 0.151750000
4 3.766947377 | 3.609311384 | 2.443407623 | 0.017053825 | —0.994280382 | 0.106801322 | 0.080651500
5 3.686757173 | 3.617925071 | 2.444096417 | 0.009512746
Exact solution | 3.666666667 | 3.666666667 | 2.444444444

The local minimum in the problem of the third level was determined by the method of
antigradient projections. Quantitative characteristics of the first three steps of the corresponding
iterative process at 7 = 0.01 are given in Table 5. The exact solution of the problem in this example

(point 9 in Fig. 4) looks like

sk
Y1

1+ V141

5 ’

1)

o 33-2V141

5 ’

Poer =

sk

5

33 -2v141

Table 5. Solving the problem of the third level to the minimum

Point in Fig. 4 v, Vv, -U Grad. norm w, w, Step
1 4.000000000 | 2.500000000 |2.292876919 |0.292812466 | —0.117759800 | —0.993042109 | 0.320363750
7 3.962274029 |2.181865306 | 2.181828016 | 0.085751139 | —0.993052354 | 0.117673374 |1.662578285
8 2.311246750 | 2.377506503 | 1.976736712 | 0.433886194 | 0.447213595 |—-0.894427191|0.589481987
9 2.574871109 | 1.850257785 | 1.850234349
Exact solution |2.574868417 | 1.850263165 | 1.850263165

To demonstrate the smoothing properties of the feedback function method, we show in Fig. 5

the graphs of the function O(r, V) = ~U(x, v,, 7—2v,) for the parameter values 7 = 0.05, 0.025, 0.01,
as well as the exact solution.

Conclusion

This article describes a scheme for solving problems of parametric programming, which allows,
in its implementation, the use of the representation of functions according to the Taylor formula.

The basis of the proposed scheme is the construction of a smooth approximation of the
dependence of the optimal values of variables on parameters. Building an approximation reduces to
finding saddle points for Lagrange functions modified in a special way.

The specifics of the applied modification is to use functions that establish feedback between
direct variables and Lagrange multipliers under optimality conditions.
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(t, v,) 2.6
\ 7 = 0.000 (1, v,) 1.96 |
24 N N 7 =0.000
\Q 1.94 \<
=0.010
VT 1.92 \‘Q\ T =0.010 y

22 LT =0.025 19 \\l‘}% /%

2 \ 1.88 17 Z0.025 \§ /
/\ x\ 1.86 v
7 =0.050 7 =0.050 v
1.8 1.84 ' 1
1 1.5 2 2.5 3 24 245 2.5 255 2.6 2.65 2.7

Figure 5. Function graphs for @(t, v))

In this case, the search for saddle points consists in solving a system of equations similar in
structure to the optimality conditions in the Karush — Kuhn—Tucker theorem. This system, however,
does not contain restrictions of nonnegativity and complementary nonrigidity.

Descriptions of the properties of feedback functions are given which provide the required
smoothness approximation and its error is also estimated.

Options for using the proposed approach are illustrated by solutions of various classes of
problems which contain parameters or reduce to them.

Comparing the proposed approach with other algorithms for solving problems (1) using Taylor
expansions, the following can be pointed out.

Methodologically, this approach is similar to both the penalty function method and the Lagrange
function modification methods.

The main similarity is that the original problem of mathematical programming is reduced to
solving systems of nonlinear equations with some instrumental parameter successively tending to the
limit value.

In this case, individual types of feedback functions can be obtained by some transformation
directly from penalty functions of a special class. It is also true that from the feedback functions one
can get some types of penalty functions.

Finally, the system of nonlinear equations (10) which is the basis of the method of feedback
functions (and realizes the feedback between the estimates of direct variables and Lagrange multipliers)
turns out to be at the same time a necessary condition for stationarity for the modified Lagrange function
of problem (1).

There is also a significant difference between the above-mentioned methods and the method of
feedback functions: for basic standard types penalty or modifying functions (such as slice functions,
piecewise smooth or barrier functions) the construction of feedback functions is impossible.

The experience gained so far allows us to give the following assessment of the feasibility of the
practical use of the method of feedback functions.

1. In the approach under consideration, the smoothness of the approximation is combined with
the possibility of regulating its errors (by selecting the value of the instrumental parameter 7).

This implies that the approach considered here is appropriate for a preliminary approximate
evaluation of solutions, which can then be used as initial approximations in other methods.

2. The proposed algorithm is a special case of primal-dual methods for solving problem (1), the
effectiveness of which is known [XKanman, 2015]. This is especially evident in the procedure for solving
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system (10) in the case where one of the problem in the dual pair is ill-conditioned, while the second
one is overdetermined [YMHoB, YMHOB, 2018, § 4.3].

3. On the other hand, it is obvious that the reduction (described in §4) of the procedure for
solving problem (1) to integration, followed by passage to the limit, is computationally not the most
efficient. However, using feedback functions in integral form may be useful in theoretical research.

We now indicate some possible directions for further development of the proposed approach.

The first of them is assessment of the effectiveness of the practical use of the method of feedback
functions and similar computational schemes. Although, according to the authors, such an assessment
falls beyond the scope of this article and seems to be the subject of a separate study, some observation
are in order here.

For example, one can avoid the need for special control over the condition s > 0 when calculating
the values of the feedback function at trial points of the process of solving the system (10) and reduce
its dependence on the choice of initial approximations. To do this, it is enough to replace non-negative
unknowns in (10) with their absolute values. In other words, one can solve, instead of the system (10),
the system

grad U(t, [x;1, [X,l, ..., [X,0, 144], [4sl, oo oy (4,0, v) = o,
X

= s s - (53)
grad U(Ta |x1|’ |x2|’ D) |xn|9 |/11|’ |/12|9 D) |/lm|9 V) = o,
A

in which the left-hand sides of the equations are even functions of the components of the vectors x
and A.

In this case, the solution process (53) can terminate in any orthant E” @ E™, however, the
solution of system (10) is obviously obtained from the solution (53) by replacing the found values of
the components x and A with their absolute values.

The second possible direction for further research is an extension of the class of feedback
functions. We can talk about, say, functions Q(, s) defined Vs € R. Indeed, by direct verification one
S

can, for example, verify that Q(t, s) = 75 — exp (—;), defined Vs € R, has all the necessary properties
feedback functions.

In the authors’s opinion, the study of the convergence of the procedure of solving the system (10)
in the case where one of the problems in the dual pair is ill-conditioned, and the second is overdetermed,
holds much promise as well.

Finally, of interest is also, the analysis of new classes of problems which reduce to the problem
statement (1) and which can efficiently be solved by the method of feedback functions.

For example, the method of feedback functions can be used to solve optimization problems
for a complex of mathematical models or in the case where the transformation of a certain subset of
variables into parameters makes it possible to reduce the solution of a nonlinear problem to a series of
linear ones. Similar approaches using the method of smooth penalty functions, namely, the distributed
simulation method and the parametric linearization scheme, are considered in [YmuoB, YMHuoB, 2018].
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