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The numerical methods developed by the author recently for calculating the molecular system based on the direct
solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions.
On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection
with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions
is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy,
the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical
format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the
problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of
the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy
function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical
problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem),
to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem).
In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of
a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary
potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format
of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, three-
particle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations
for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points
by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above
are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the
arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary
points is consistent with the corresponding form of the potential energy function.
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Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения
уравнения Шрёдингера методом Монте-Карло показали огромную неопределенность в выборе решений. С одной сто-
роны, оказалось возможным построить множество новых решений, с другой стороны, резко обострилась проблема их
связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро
после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, мето-
да молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате
описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора
решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигураци-
онного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной
энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим за-
дачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы
выбора), по заданному набору стационарных точек реконструировать функцию потенциальной энергии (обратная за-
дача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы
выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновес-
ных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций
в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциаль-
ной энергии: бинарный, трехчастичный и т. д., многочастичный потенциал максимальной частичности. Обсуждается
и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально мно-
гочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования мно-
гочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на
то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время.
Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных
точек согласуются с соответствующей формой функции потенциальной энергии.

Ключевые слова: проблема выбора решений, разметка пространства, моноатомный кластер,
вычислительный эксперимент, градиентный спуск, функция потенциальной энергии, бинарный
и многочастичный потенциалы
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1. Introduction

In earlier works by the present author [Плохотников, 2019; Plokhotnikov, 2021], a numerical
method for solving the Schrödinger equation to describe an arbitrary quantum system is presented. The
described method is developed at the intersection of finite difference and Monte Carlo approaches. This
method has proved to be very effective in terms of low machine time costs provided that the average
positions of the particle nuclei of the quantum system are known. To determine the latter, an-other
computational technique was developed [Плохотников, 2020], which is based on the virial theorem
and reduction to a multiple solution of the equation “the potential energy of a quantum system is equal
to two dissociation energies” with subsequent averaging of the found positions.

Further development of this computational approach is associated with the quantum mechanical
description of water clusters [Плохотников, 2022b; Plokhotnikov, 2022]. From the description of
clusters of water molecules, it became clear how to lead the electronic and ionic components of
a quantum system in space to obtain the desired quantum mechanical solution. Accordingly, there
turned out to be an infinite number of solutions describing an arbitrary quantum system to permit the
construction of a statistical generator of solutions to the Schrödinger equation [Плохотников, 2022a;
Plokhotnikov, 2023]. The problem of choosing a solution from an infinite number, which is well
known, e. g., in the theory of quantum measurements [Менский, 1983; Броер, Петруччионе, 2010;
Schlosshauer, 2019; Zurek, 2022], becomes especially acute after constructing a statistical generator of
solutions to the Schrödinger equation.

In general, all the so-called ab initio calculations [Хартри, 1960; Kohn, 1999; Kim et al., 2018]
in quantum mechanics proceed from some (explicitly or implicitly accepted) a priori spatial markup of
a quantum system. Such a specified spatial markup can be provided by constructing the corresponding
potential energy function [Car, Parrinello, 1985; Marx, Hutter, 2009; Kühne et al., 2020], which is
expressed in terms of the positions of the particle nuclei of the quantum system. In the latter case, the
so-called Born –Oppenheimer approximation is used.

Since the topic discussed in the article arose on the way to solving the Schrödinger equation,
we present the main results with minimal use of the appropriate formulas, focusing on appropriate
interpretations and conclusions.

The presented task was to numerically solve the Schrödinger equation describing an arbitrary
quantum system using the Monte Carlo method. Let us write down the Schrödinger equation describing
in dimensionless form the dynamics of a quantum system consisting of n particles, i. e.,

iψt = −
1
2

n∑

j=1

μ jΔ jψ + Uψ,

where ψt =
∂ψ
∂t , Δ jψ =

∂2ψ

∂x2
j
+

∂2ψ

∂y2
j
+

∂2ψ

∂z2
j
, U = U(r1, . . . , rn) =

∑
1= j<k=n

qiq j

|r j−rk | — Coulomb potential energy,

i2 = −1, μ j =
me
mj

— the ratio of the mass of an electron me to the mass of a quantum particle m j,

qj — particle charges expressed in units of electron charge, ψ = ψ(t, r1, . . . , rn) — a wave function
describing a quantum system, t — time, r1, . . . , rn — the spatial positions of each of the quantum
particles in three-dimensional space.

In the numerical algorithm for solving the Schrödinger equation presented below, described in
the works of the author [Плохотников, 2019; Plokhotnikov, 2021], the molecular system is either
split into N copies or each quantum particle (both the nuclei of elements and electrons) is represented
as N subparticles. Let the dissociation energy of a quantum system be E

Σ
, then the algorithm for

solving the Schrödinger equation is reduced to the following computational steps.
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1. Let us introduce N radius vectors ri = (r1,i, . . . , rn,i), i = 1, . . . , N in a space of dimension 3n
according to point 4 of this algorithm.

2. Let us make up a matrix Q = 1
2εNeN − 1

2εoN + diag(Ui), where ε = − 2E
Σ

N is a non-negative
parameter that ensures the fulfillment of the conditions of the virial theorem in relation to the
molecular system, eN is a single matrix in size N × N, oN is a special matrix in size N × N,
all elements of which are units, diag(Ui) is a diagonal matrix in size N × N, on the diagonals
of which are the values of the potential energy of the molecule at points ri, i = 1, . . . , N. The

potential energy of the system is calculated using the formula: Ui =
∑

1= j<k=n

qiq j

|r j,i−rk,i | .

3. Find the eigenvalues Ω1, . . . , ΩN and eigenvectors c1, . . . , cN of the matrix Q. Let us choose
among the set of eigenvalues the one Ωα � E

Σ
, that is closest to the total energy of the molecule,

i. e. α = arg min
1�i�N

|Ωi−E
Σ
|. Assuming that the eigenvectors are normalized by one, we will find the

localization Rk,α, k = 1, . . . , n of the positions of the quantum particles included in the quantum

system: Rk,α =
N∑

i=1
c2
α,irk,i.

4. Repeat the procedure in part 1–3 M times, assuming that the radius vectors ri = (r1,i, . . . , rn,i),
i = 1, . . . , N are selected each time according to the scheme of the form: rk,i = ak +σ2L√μkηk,i,
k = 1, . . . , n; i = 1, . . . , N, where ak, k = 1, . . . , n — the so-called scattering centers (middle
positions) of quantum particles; σ — some non-negative fitting coefficient; L — typical task size;
ηk,i, k = 1, . . . , n, i = 1, . . . , N — vectors of independent random variables whose coordinates
have zero mathematical expectation and variance of the order of one.

The numerical algorithm presented above for solving the Schrödinger equation is aimed at
searching for pure states of a quantum system. Taking into account the central limit theorem of prob-
ability theory, this algorithm was found to become more and more accurate with an increase in the
number of particles in a quantum system; with the number of quantum particles exceeding several
dozen, its accuracy is quite satisfactory. The spatial construction of scattering clouds of all particles of
the quantum system at the output of using this algorithm is considered as a solution to the Schrödinger
equation.

Using the example of modeling water clusters using the specified numerical method, the choice
of input parameters comprising the average positions of particles a1, . . . , an turned out to be associated
with the statistical agreement of the positions of positively charged particle nuclei and electrons. This
coordination is referred to as a procedure for leading together the nuclei of particles and electrons
despite the huge arbitrariness in choosing the positions of the nuclei of particles. As a result, a so-
called statistical generator of solutions to the Schrödinger equation was constructed [Плохотников,
2022a; Plokhotnikov, 2023]. Although there turned out to be infinitely many such solutions, this is
typical for any partial differential equation; the Schrödinger equation is no exception in this regard.
Thus, there are infinitely many solutions; moreover, they are not subordinated to each other, as is the
case with the classical format of describing a molecular system, e. g., using the molecular dynamics
method.

From this stage, the problem of choosing solutions arose. On the one hand, there are infinitely
many solutions, and they are equally possible, as indicated by the statistical solution generator. On
the other hand, there is not an infinite number of solutions in the face of a set of local minima of
the potential energy function, as in the method of molecular dynamics. The question then arises: is
not the method of molecular dynamics — and, accordingly, the classical format of the description of
a molecular system — a way, if not to solve, then at least to mitigate the problem of choosing solutions?
It was this circumstance that gave rise to the present work.
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Let us return now to the material under consideration. For simplicity, consider a monoatomic
quantum system consisting of N identical atoms. According to the numerical approach mentioned
above, it follows that the average positions, r1 = (x1, y1, z1), . . . , rN = (xN , yN , zN) of the particle
nuclei can be arbitrarily moved; following a special procedure for spatial bring of electrons with
particle nuclei, new acceptable solutions can be obtained by the Schrödinger equation. In fact, from
the point of view of the Schrödinger equation, there is no spatial markup in the quantum system.
This arises, for example, when switching to the description of a quantum system in the language
of molecular dynamics [Stillinger, Weber, 1984; Товбин, 1996; Frenkel, Smit, 2002], where, as is
known, the central role is played by the function of potential energy U = U(r1, . . . , rN). It is the
latter, comprising a function of 3N variables through its stationary points, that provides the appropriate
markup for both the configuration space of dimensions 3N and the three-dimensional space in which
the quantum system under study is placed.

In contradistinction with the works [Wales, 2002; Wales, 2009; Röder, Wales, 2022], in which
the reaction rates are calculated taking into account the layout of the configuration space, the molecular
system is considered in the present work from the point of view of statistical physics as a canonical
ensemble at zero temperature. Modern digital designers of molecular systems [Amber Project, 2023;
HyperChem, 2009] concentrate the classical format for describing a complex system. In the above-
mentioned and other various constructors, the choice of a class of configurations of a molecular system
is determined by the background of the use of one or another classical and (or) quantum methods of
description, while in all cases the inclusion of certain atoms or molecular subsystems in the desired
design does not imply their radical transformation.

First, let us assume that there are a finite number of stationary points Nstp of the potential energy
function U (up to shifts, rotations and permutations of particles) and they are isolated from each other.
As is known, stationary points are those points o1, . . . , oNstp

in the configuration space of dimension 3N

in which the gradient of the potential energy function takes on a zero value, i. e.

Uxi
(ol) =

∂U(ol)

∂xi

= 0, Uyi
(ol) =

∂U(ol)

∂yi

= 0, Uzi
(ol) =

∂U(ol)

∂zi

= 0, (1)

where l = 1, . . . , Nstp, i = 1, . . . , N.

A set of stationary points o1, . . . , oNstp
is insufficient for the desired marking of the configuration

space and removing the problem of choosing a solution. Since we want to obtain information about
the nature of each of the stationary points, it will be necessary to study the matrix of the second
derivatives H of the potential energy function in order to count the number of positive pl, l =
= 1, . . . , Nstp and negative ml, l = 1, . . . , Nstp eigenvalues. At the same time pl + ml � rank(H),
where rank(H) is the rank of the Hesse matrix of potential energy. Since the potential energy function
is generally invariant with respect to arbitrary shifts and rotations in the three-dimensional space of
a quantum system as a whole, its rank does not exceed the value 3N −6. Thus, the inequality is true for
each of the stationary points: pl+ml � 3N−6, l = 1, . . . , Nstp. Since the values pl, ml are non-negative,
insofar pl, ml = 0, 1, . . . , 3N − 6 for any stationary point, i. e., when l = 1, . . . , Nstp.

All stationary points are divided into three categories: 1) local minima in which pl > 0, ml = 0;
2) saddle points in which pl > 0, ml > 0; 3) local maxima in which pl = 0, ml > 0. Taking into account
the mentioned terminology, it is clear that an arbitrary image point in the configuration space, from the
point of view of classical forces determined by the anti-gradient of potential energy, moves from one
stationary point to another. Under certain conditions, this movement ends with the localization of the
image point in one of the local minima. If we now assume that the energy from the molecular system
not only goes away during the transition to a local minimum, but also enters, then the image point can
be considered as wandering along stationary points.

2024, Т. 15, № 6, С. e1573–e1600
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As a result, the classical method of removing quantum uncertainty in choosing a solution to
the Schrödinger equation is reduced to calculating a set of stationary points o1, . . . , oNstp

with given

characteristics in the face of the number of positive pl, l = 1, . . . , Nstp and negative ml, l = 1, . . . , Nstp
eigenvalues of the Hesse matrix of potential energy. The task of identifying the markup is typically
solved with a given potential energy function. However, the inverse problem of reconstructing potential
energy according to a given markup looks much more complicated and uncertain. According to the
results of the computational experiment presented in the paper, the number of stationary points can be
infinite and even uncountable under certain conditions.

Thus, two physical and mathematical problems can be formulated. The first, direct problem
of choosing solutions: uses a given potential energy function, to find all stationary points (sets of
stationary points), i. e., determine the marking up of the configuration space. The second, inverse
problem of choosing solutions involves a reconstruction of the potential energy function according to
a given set of stationary points (a set of stationary points), i. e., according to a given marking up of
the configuration space. In the present paper, the solution of a direct problem is discussed using the
example of a description of a monoatomic cluster.

2. The spectrum of multiparticle forms of potential representation

Let us construct a spectrum of multiparticle potentials, starting with binary or two-particle, U2,
three-particle, U3, etc. up to the maximum particle potential, UN . We will construct a set of multiparticle
potentials Uα = Uα(r1, . . . , rN), α = 2, . . . , N by induction.

Figure 1. Radius vector positioning schemes for binary (a) and three-particle (b) particle interaction schemes in
a cluster

Let us define a set of radius vectors qi, j = ri − 1
2 (ri + r j) =

1
2ri, j, where ri, j = ri − r j, i, j =

= 1, . . . , N. By entering the center of symmetry of a pair of identical particles rcs,i, j =
1
2 (ri + r j), the

following representation can be written: ri = qi, j + rcs,i, j, r j = q j,i + rcs,i, j. It follows from the latter that
a pair of vectors qi, j, q j,i act as radius vectors directed from the center of symmetry of a pair of particles
to the i-th and j-th particles (Fig. 1, a). Note that the pairs of particles {i, j}, i, j = 1, . . . , N (i � j)
total N(N − 1). We describe the contribution to the potential energy of particle pairs {i, j} and { j, i}
the following expression: 1

2 [ϕ2(|qi, j|) + ϕ2(|q j,i|)], where ϕ2(·) — some as yet undefined function of one
variable. Since qi, j + q j,i = 0, insofar as the contribution of a pair {i, j} of particles to the potential
energy will be the value ϕ2(|qi, j|). As a result, we write down the following representation for the
binary potential:

U2 =
1
2

N∑

i, j=1 (i� j)

ϕ2(|qi, j|) =
∑

i< j

ϕ2(|qi, j|). (2)

Let us build a three-particle potential, U3. A set of radius vectors qi, j,k = ri − 1
3 (ri + r j + rk) =

= ri − rcs,i, j,k =
1
3 (2ri − r j − rk) is defined, where rcs,i, j,k — the center of symmetry of the three particles,

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ
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i, j, k = 1, . . . , N. It follows from the latter representation that the three vectors qi, j,k, q j,i,k, qk,i, j act
as radius vectors directed from the center of symmetry of the three particles to the i-th, j-th and k-th
particles (Fig. 1, b). Note that the triples of particles {i, j, k}, i, j, k = 1, . . . , N (i � j � k � i)
total N(N − 1)(N − 2). We describe the contribution to the potential energy of all six permutations of
triples of particles {i, j, k}, {i, k, j}, {k, i, j}, {k, j, i}, { j, i, k}, { j, k, i} by the expression:

1
6

[ϕ3(|qi, j,k |) + ϕ3(|qi,k, j|) + ϕ3(|qi j,i,k |) + ϕ3(|qi j,k,i|) + ϕ3(|qk,i, j|) + ϕ3(|qk, j,i|)],

where ϕ3(·) — as yet undefined function of one variable. Since qi, j,k = qi,k, j, q j,i,k = q j,k,i, qk,i, j = qk, j,i,

the contribution to potential energy will be rewritten as: 1
3 [ϕ3(|qi, j,k |)+ϕ3(|q j,k,i|)+ϕ3(|qk,i, j|)]. Since the

identity is true: qi, j,k + q j,k,i + qk,i, j = 0, from the three vectors qi, j,k, q j,k,i, qk,i, j two are independent.
As a result, we can write the following representation for a three-particle potential:

U3 =
1
6

N∑

i, j,k=1 (i� j�k�i)

1
3

[ϕ3(|qi, j,k |) + ϕ3(|q j,k,i|) + ϕ3(|qk,i, j|)] =

=
∑

i< j<k

1
3

[ϕ3(|qi, j,k |) + ϕ3(|q j,k,i |) + ϕ3(|qk,i, j|)]. (3)

After determining the binary (2) and three-particle (3) potentials, the algorithm for constructing
all further multiparticle representations of the potential energy function U4, . . . , UN became clear.
Below we will consider in more detail the multiparticle potential of the maximum particle, UN .

Let us define a set of vectors qi = ri − 1
N

N∑
j=1

r j = ri − rcs =
1
N

[
(N − 1)ri −

N∑
j=1 ( j�i)

r j

]
, where

the rcs — center of symmetry of the entire cluster, i = 1, . . . , N. As in the cases of binary and three-
particle potentials, a set of vectors q1, . . . , qN is directed from the center of symmetry of the cluster
to each of the particles with the corresponding number. As a result, we will write down the desired
expression:

UN =
1
N

[ϕN(|q1|) + · · · + ϕN(|qN |)] =
1
N

N∑

i=1

ϕN(|qi|), (4)

where ϕN(·) — as yet undefined function of one variable.
We define the set of functions ϕ2, . . . , ϕN by choosing one of the known binary potentials as

a basis, for example, the Mie potential, φMie. For the Mie potential, a pair of particles with radius
vectors ri and r j gives a contribution to the potential energy in the amount of:

φMie(ri, j) = εφ

(ri, j

r0

)
=

ε

n − m

⎡⎢⎢⎢⎢⎢⎣m
⎛⎜⎜⎜⎜⎜⎝

r0

ri, j

⎞⎟⎟⎟⎟⎟⎠
n

− n

⎛⎜⎜⎜⎜⎜⎝
r0

ri, j

⎞⎟⎟⎟⎟⎟⎠
m⎤⎥⎥⎥⎥⎥⎦, (5)

where ri, j = |ri, j| =
√

(xi − x j)
2 + (yi − y j)

2 + (zi − z j)
2, φ(r) = m

n−m r−n − n
n−m r−m, n > m > 0, r0 =

= const > 0 — the abscissa of the minimum function φMie, −ε = φMie(r0) — the interaction energy of
a pair of particles at the minimum point.

To use the Mie potential in defining a set of functions ϕ2, . . . , ϕN it is necessary to select the
appropriate parameters ε and r0 for each of the functions of the set ϕ2, . . . , ϕN. In other words, let us
assume that

ϕα(q∼) = εαφ

(
q∼
q∗,α

)
=

εα
n − m

[
m

(
q∗,α
q∼

)n

− n

(
q∗,α
q∼

)m]
, α = 2, . . . , N, (6)

where q∼ = |qi, j|, |qi, j,k |, . . . ; q∗,α, α = 2, . . . , N — some set of parameters.
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The assessment of a set of energy parameters ε2, . . . , εN can be carried out in different ways.
Thus, from the point of view of the Born –Oppenheimer decomposition, the interaction potential U
can be represented by the sum U = U2 + · · · + UN of binary, three-particle and other multiparticle
potentials, whose contribution to the total energy decreases rapidly with increasing index, i. e. ε2 �� ε3 � · · · � εN . Another approach involves describing the initial cluster with one of the multiparticle
potentials, starting with U3. In this case, for evaluation εα, α = 3, . . . , N we can reason as follows.
We know the parameter ε2 = ε for particle pairs well. Taking into account (2)–(6), we write down
the representation Uα = εα

∑
ϕ′α, where ϕ′α =

ϕα
εα
, α = 2, . . . , N, then, assuming that Uα � U2, α =

= 3, . . . , N, we get an estimate εα = ε2

∑
ϕ′2∑
ϕ′α = ε

∑
ϕ′2∑
ϕ′α , α = 3, . . . , N for an unknown set of parameters.

Let us evaluate the set of parameters q∗,α, α = 2, . . . , N. So, when α = 2 we have q∼ = |qi, j| =
= 1

2ri, j. In this case, it can be assumed that q∗,2 =
1
2r0, then the equilibrium minimum distance between

a pair of particles will become equal r0, which is described by the Mie potential in the form (5).
Let it be now α = 3, а q∼ = |qi, j,k |. Taking into account Fig. 1, b, it is clear that when positioning

three particles in the form of an equilateral triangle, we have |qi, j,k| = |q j,i,k | = |qk,i, j|. In this case, as

it is easy to figure out, q∗,3 =
1√
3
r0, what corresponds to the radius of the circumscribed circle of an

equilateral triangle.

Finally, for α = 4, i. e., for a regular tetrahedron q∗,4 =
√

6
4 r0, which corresponds to the radius

of the described sphere of the tetrahedron. However, it remains to understand what q∗,α are equal
to when α � 5. In the future, without limiting generality, we will measure distances and energies in
units r0 and ε, respectively.

To find q∗,α at α � 5 we minimize the following form Ω =
∑

1=i< j=α

(
ri, j + r−1

i, j

)
, i. e. we solve the

problem Ω→ min by changing the positions of the cluster particles and then calculating the expression

q∗,α =
1
α

α∑

i=1

|ri − rcs|. (7)

The choice of shape Ω is associated with the requirement that the particles in the cluster, on
the one hand, be attracted to each other, while on the other hand, pairs of particles should not get too
close. In connection with the last remark, it can be understood that asymptotically, with an increase
in the number of particles in the cluster, the parameter q∗,α will be proportional to the value α1/3,
i. e. q∗,α ∝ α1/3.

To minimize the shape Ω, we will solve the problem of gradient descent in the following form:

ẋi = −
∂Ω

∂xi

= −
α∑

k=1 (k�i)

(
r−1

i,k − r−3
i,k

)
xi,k,

ẏi = −
∂Ω

∂yi

= −
α∑

k=1 (k�i)

(
r−1

i,k − r−3
i,k

)
yi,k,

żi = −
∂Ω

∂zi

= −
α∑

k=1 (k�i)

(
r−1

i,k − r−3
i,k

)
zi,k,

(8)

where xi,k = xi − xk, yi,k = yi − yk, zi,k = zi − zk, i, k = 1, . . . , α, the dot above the values
denotes the derivative of the parameter that provides gradient descent. The system 3α of differential
equations (8) is solved until the norm of the gradient of the potential energy function ‖ gradΩ‖ =
=

(
α∑

i=1
Ω2

xi
+

α∑
i=1
Ω2

yi
+

α∑
i=1
Ω2

zi

)1/2

becomes less than some small number δ equal to, for example, 10−10,

i. e., the completion of calculations of the system of differential equations is carried out provided
that ‖ gradΩ‖ < δ.
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To verify that the solution of problem (8) led to finding exactly the minimum configuration, it
remains to find all the eigenvalues of the corresponding Hesse matrix H of the form Ω and ensure
that all of them are non-negative. The Hesse matrix has dimensions 3α × 3α and consists of nine

cells
{
Ωxi,x j

}
, . . . ,

{
Ωzi,z j

}
, each of which has a size α × α, because i, j = 1, . . . , α, i. e.,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
Ωxi,x j

} {
Ωxi ,y j

} {
Ωxi ,z j

}

{
Ωyi,x j

} {
Ωyi,y j

} {
Ωyi,z j

}

{
Ωzi,x j

} {
Ωzi,y j

} {
Ωzi,z j

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Below are all the necessary second partial derivatives of the form Ω, namely

Ωxi,x j
= δi, j

∑

k�i

[(
−r−3

i,k + 3r−5
i,k

)
x2

i,k + r−1
i,k − r−3

i,k

]
− (1 − δi, j)

[(
−r−3

i, j + 3r−5
i, j

)
x2

i, j + r−1
i, j − r−3

i, j

]
,

Ωxi,y j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
xi,kyi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
xi, jyi, j,

Ωxi,z j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
xi,kzi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
xi, jzi, j,

Ωyi,x j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
yi,k xi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
yi, j xi, j,

Ωyi,y j
= δi, j

∑

k�i

[(
−r−3

i,k + 3r−5
i,k

)
y2

i,k + r−1
i,k − r−3

i,k

]
− (1 − δi, j)

[(
−r−3

i, j + 3r−5
i, j

)
y2

i, j + r−1
i, j − r−3

i, j

]
,

Ωyi,z j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
yi,kzi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
yi, jzi, j,

Ωzi,x j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
zi,k xi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
zi, j xi, j,

Ωzi,y j
= δi, j

∑

k�i

(
−r−3

i,k + 3r−5
i,k

)
zi,kyi,k − (1 − δi, j)

(
−r−3

i, j + 3r−5
i, j

)
zi, jyi, j,

Ωzi,z j
= δi, j

∑

k�i

[(
−r−3

i,k + 3r−5
i,k

)
z2

i,k + r−1
i,k − r−3

i,k

]
− (1 − δi, j)

[(
−r−3

i, j + 3r−5
i, j

)
z2

i, j + r−1
i, j − r−3

i, j

]
,

where δi, j — the Kronecker symbol, i, j, k = 1, . . . , α.
Let us introduce a procedure for distinguishing two configurations from each other in a cluster

of N identical particles. To do this, we will find all the binary distances ri, j, 1 = i < j = N of the

particles in the cluster. Such distances Nb =
1
2 N(N − 1). Let us order all binary distances in ascending

order, to get a set of distances

R = sort{r1,2, . . . , rN−1,N} =
{

rk1 ,k2
, . . . , rl1 ,l2︸������������︷︷������������︸

Nb

}
,

where sort — the operation of sorting a set of numbers in ascending order.
Let us define the metric d(·, ·) in the space of all binary distances of the cluster under

consideration as follows. Let there be a pair of configurations c1, c2 of cluster particles with sets
of binary distances ordered in ascending order R1, R2, then the configurations c1, c2 are considered
indistinguishable when d(R1, R2) = max

1�k�Nb

|R1,k − R2,k| � δc, where δc — some small number, otherwise

we assume that the configurations are different. The proposed criterion is invariant with respect to
shifts and rotations of the cluster in space, as well as with any permutation of particles in the cluster.
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Let locally equilibrium configurations Nlm be found by solving the gradient descent problem (8),
sets of ascending binary distances are calculated R1, . . . , RNlm

. The algorithm for selecting

a set
{
R1, Ri2

, . . . , Rik

}
of configurations that do not match each other boils down to the following

steps.
The desired set starts with the configuration R1. If d(R2, R1) > δc, then a second configuration

is added to the desired set and Ri2
= R2. Let us now consider R3. To enable it, two inequalities must be

fulfilled, provided that the configuration R2 was enabled earlier, namely: d(R3, R1) > δc, d(R3, R2) > δc.
Continuing the specified process of sorting through the locally available equilibrium configurations,

we obtain the desired set of configurations
{
R1, Ri2

, . . . , Rik

}
that do not match each other, which are

located in pairs at a distance greater than δc. It can be verified that the space of configurations with
distance d(·, ·) is a metric space. The fulfillment of the axioms of identity and symmetry is obvious,
the fulfillment of the axiom of the triangle (d(R1, R2) � d(R1, R3)+ d(R2, R3)) has been verified by the
Monte Carlo method. In all experiments, the axiom of the triangle was fulfilled.

(a) Equilibrium configuration
of particle positions at α = 4

(b) Equilibrium configuration of
particle positions at α = 7

(c) Four locally equilibrium configurations
of particle positions at α = 25

Figure 2

Figure 2 shows examples of equilibrium and locally equilibrium configurations obtained by
solving problem (8) in experiments with the number M = 104. In each of the experiments, all the
eigenvalues of the Hesse matrix (9) were found, which turned out to be non-negative in all cases.
In the calculations for solving problem (8), the initial positions of the cluster particles were selected
uniformly randomly from a cube [−L, L]3, where it was assumed that L = 1. In addition, it was
assumed that δ = 10−10, δc = 0.05. In Figure 2, the positions of the particles are indicated by red
markers in the form of dots, the edges of blue and black colors have a length in the vicinity of one and
from the interval [1, 2], respectively. It turned out that the solution of problem (8) with an increase in
the number of particles in the cluster, starting from α = 9, is not the only one. Figure 2, c shows four
different configurations of particles in a cluster at α = 25. In this case, when calculating by formula (7),
it is necessary to average the number of locally equilibrium configurations.

Table 1. The dependence of the value q∗,α on α

α 2 3 4 5 6 7 8 12 20 25

q∗,α
1
2 = 0.5 1√

3
� 0.5774

√
6

4 � 0.6124 0.6425 0.6593 0.6769 0.6888 0.7074 0.7364 0.7465

Table 1 shows the results of solving the problem (8) with subsequent estimation of the values q∗,α
at α � 5 according to the formula (7), as well as the known values at α = 2, 3, 4. It should be noted
that the exact values of the parameter q∗,α at α = 2, 3, 4 are reproduced with high accuracy within the
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framework of solving problem (8). According to Table 1, a suitable regression model of the dependence
of the values q∗,α on α was constructed, namely q∗,α = 0.401 + 0.129α1/3, at the same time, the
coefficients of the regression model turned out to be significant at the level of no worse than 2 · 10−4.

3. Marking up space using a binary potential

First, let us consider the binary interaction potential of particles in a cluster when U =

=
∑

1�i< j�N
ϕ2(|qi, j|) =

∑
1�i< j�N

φ(|ri, j |), where φ(r) = ε
n−m

[
m
( r0

r

)n − n
( r0

r

)m]
. In units ε and r0 the Mie

potential can be rewritten in dimensionless form φ(r) = m
n−m r−n − n

n−m r−m. Also, in the future we will

need two derived functions φ(r): μ(r) = φ′(r)
r = nm

n−m

(
−r−n−2 + r−m−2

)
и χ(r) = μ′(r)

r =
n(n+2)m

n−m r−n−4 −
− nm(m+2)

n−m r−m−4. The specified binary potential in the form of Mie (Lennard – Jones) is used, for example,
to describe noble (inert) gases [Hirschfelder, Curtiss, Bird, 1954].

Considering the particles in the cluster as balls with a radius 1
2r0 =

1
2 and equating the volume

of N ball particles to the volume of a cube with a side 2
(
L + 1

2

)
, we find L = − 1

2 +
1
4

3
√

4
3πN. In

the future, when searching for stationary points of the potential energy function using the gradient
descent method, we will proceed from the fact that the initial positions of the cluster particle centers
are positioned inside the cube [−L, L]3.

Taking into account the lower computational cost of searching for points of the local minimum of
the potential energy function in comparison with other stationary points, we consider two computational
procedures. As part of the first procedure for finding points of the local minimum, we will repeatedly
solve the problem of gradient descent:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = −Uxi
= −

∑

k�i

μ(ri,k)xi,k,

ẏi = −Uyi
= −

∑

k�i

μ(ri,k)yi,k,

żi = −Uzi
= −

∑

k�i

μ(ri,k)zi,k,

(10)

where i, k = 1, . . . , N; the point above the values xi, yi, zi indicates the derivative of the variable
along which the gradient descent is carried out. The system of 3N differential equations (10) is solved

until the norm of the gradient of the potential energy function ‖ grad U‖ =
(

N∑
i=1

U2
xi
+

N∑
i=1

U2
yi
+

N∑
i=1

U2
zi

)1/2

becomes less than some small number δ.
To search for stationary points, including points of local minimum, we will minimize the

expression Φ = Φ(x1, y1, . . . , zN) = 1
2

N∑
i=1

U2
xi
+ 1

2

N∑
i=1

U2
yi
+ 1

2

N∑
i=1

U2
zi
. As a result, for the second

computational procedure for finding stationary points using the gradient descent method, the following
system of 3N ordinary differential equations can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ j = −Φx j
= −

N∑

i=1

(
Uxi

Uxi ,x j
+ Uyi

Uyi,x j
+ Uzi

Uzi,x j

)
,

ẏ j = −Φy j
= −

N∑

i=1

(
Uxi

Uxi,y j
+ Uyi

Uyi,y j
+ Uzi

Uzi,y j

)
,

ż j = −Φz j
= −

N∑

i=1

(
Uxi

Uxi ,z j
+ Uyi

Uyi,z j
+ Uzi

Uzi,z j

)
,

(11)

where j = 1, . . . , N.
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In (11) contains the elements of the Hesse matrix of the second derivatives of the potential energy
function. A Hesse matrix having dimensions 3N × 3N, can be represented as a block matrix consisting

of nine blocks
{
Uxi ,x j

}
, . . . ,

{
Uzi,z j

}
, each of which has a size N × N, because i, j = 1, . . . , N, i. e.,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
Uxi ,x j

} {
Uxi ,y j

} {
Uxi,z j

}

{
Uyi,x j

} {
Uyi,y j

} {
Uyi ,z j

}

{
Uzi,x j

} {
Uzi,y j

} {
Uzi,z j

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Below are the expressions for counting each of the nine block matrices included in (12):

Uxi ,x j
= δi, j

∑

k�i

[
χ(ri,k)x2

i,k + μ(ri,k)
]
− (1 − δi, j)

[
χ(ri, j)x2

i, j + μ(ri, j)
]
,

Uxi ,y j
= δi, j

∑

k�i

χ(ri,k)xi,kyi,k − (1 − δi, j)χ(ri, j)xi, jyi, j,

Uxi ,z j
= δi, j

∑

k�i

χ(ri,k)xi,kzi,k − (1 − δi, j)χ(ri, j)xi, jzi, j,

Uyi ,x j
= δi, j

∑

k�i

χ(ri,k)yi,k xi,k − (1 − δi, j)χ(ri, j)yi, j xi, j,

Uyi,y j
= δi, j

∑

k�i

[
χ(ri,k)y2

i,k + μ(ri,k)
]
− (1 − δi, j)

[
χ(ri, j)y

2
i, j + μ(ri, j)

]
,

Uyi ,z j
= δi, j

∑

k�i

χ(ri,k)yi,kzi,k − (1 − δi, j)χ(ri, j)yi, jzi, j,

Uzi,x j
= δi, j

∑

k�i

χ(ri,k)zi,k xi,k − (1 − δi, j)χ(ri, j)zi, j xi, j,

Uzi,y j
= δi, j

∑

k�i

χ(ri,k)zi,kyi,k − (1 − δi, j)χ(ri, j)zi, jyi, j,

Uzi,z j
= δi, j

∑

k�i

[
χ(ri,k)z2

i,k + μ(ri,k)
]
− (1 − δi, j)

[
χ(ri, j)z

2
i, j + μ(ri, j)

]
.

First, we calculate the number of local minima Nlm of the potential energy function for a different
number of particles in the cluster N = 2, 3, . . . For each N, task (10) is performed M times, counting
the initial positions of the particles as uniformly random vectors in the cube [−L, L]3.

Table 2 provides a summary of the results of calculating the number of local minima Nlm of the
potential energy of the cluster with a different number of particles N. In all solutions of problem (10),
it was assumed that n = 12, m = 6, i. e., the Lennard – Jones potential was taken into account. For each
value of N, M = 5 × 104 numerical solutions of the problem (10) were carried out. It was assumed
that δ = 10−10, δc = 0.05. The signs of the inequalities “�” in Table 2 mean that the estimates of the
number of local minima are given from below.

Table 2. The results of calculating the number of local minima of potential energy for a different number of
particles in a cluster

N 2 ÷ 5 6 7 8 12 15 20 25 30
Nlm 1 2 4 8 � 290 � 934 � 6922 � 16′423 � 18′984

Table 2 clearly shows that the number of local minima Nlm increases rapidly with the increase
of the number of particles N in the cluster. According to Table 2, we will construct an asymptotic
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regression estimate
(
in the class of functions Nlm = b0 + eb1N

)
of the number of local minima. It

was found that the coefficient b0 is not statistically significant (at the level of 0.05), whereas the
coefficient b1 is highly significant, therefore it can be written Nlm ∝ e0.327·N at N � 6. The coefficient
of 0.327 in the regression estimation is significant at the level of no worse then 5.56 · 10−8. In other
words, the number of local minima is growing exponentially fast. This assessment is consistent with
the assessments of other authors [Stillinger, LaViolette, 1986; Бирштейн, Птицын, 1964].

Figure 3 shows spatial samples of locally equilibrium configurations of particles in clusters with
a number of particles 6 and 7, respectively. The straight lines in the graphs in Figure 3 are drawn in
cases where their length differs from one by no more than 0.05. The graphs in Figure 3 and below
depict the potential energy values of each of the locally equilibrium configurations, ranked in ascending
order of potential energy from left to right and from top to bottom.

(a) Two locally equilibrium cluster configurations
at N = 6

(b) Four locally equilibrium cluster
configurations at N = 7

Figure 3

Let the values of potential energies of locally equilibrium configurations be concentrated in the
interval [min Ulm, max Ulm]. In this case, the relative range of changes κlm in the potential energies of

the equilibrium configurations is determined by the formula κlm =
2(max Ulm−min Ulm)
|max Ulm+min Ulm| . So for N = 12,

15, 20, 25, 30 it is found that κlm = 0.1695, 0.1479, 0.1346, 0.1042, 0.1000 respectively, i. e., with
increasing N, the relative interval κlm decreases. Considering that the coefficient κlm is non-negative,
a suitable regression formula was constructed to estimate the dependence κlm on N, namely κlm =

= 0.054 + 1.414
N , N � 12 at a coefficient value level not higher than 0.012. Thus, with an exponential

increase in the number of local minima, their relative energy concentration range decreases, i. e.,
there is a rapid increase in energy degeneracy of various local minima. This means that individual
locally equilibrium spatial configurations can be very different, whereas their energies can be close to
each other.

As an example, we will construct a pair of locally equilibrium cluster configurations with N =
= 30, which, on the one hand, are spatially noticeably different from each other, on the other hand,
their energies differ slightly. Let the desired equilibrium configurations have numbers s and h. Let
us determine the relative distance between the energies of the equilibrium configurations by the

formula: κs,h =
2|Ulm,s−Ulm,h |
|Ulm,s+Ulm,h | . We will assume that a certain set of locally equilibrium configurations

has been found in M experiments on solving the system of equations (10). Let us choose from this
set such a pair of configurations with numbers s and h, for which the maximum is realized D =
= max

s, h; κs,h�δκ
d(Rs, Rh), when κs,h � δκ.

Figure 4 shows the result of calculations in the form of a pair of locally equilibrium
configurations that differ markedly from each other, whose energies differ slightly. Although it was
believed that M = 5 · 104, δκ = 10−4, it turned out that D = 0.9899, i. e., a pair of configurations are
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Figure 4. Example of a pair of markedly different locally equilibrium configurations of a cluster with N = 30,
whose energies differ in the second decimal place

spatially noticeably distinguishable. To clearly indicate the difference between a pair of configurations,
edges with lengths in the vicinity of one are marked in blue, while edges with lengths in the vicinity
of 3.5 are marked in black. As indicated by the presence of several long black ribs, the configuration
on the right in Figure 4 is noticeably more elongated than the configuration on the left.

Figure 5 shows two graphs describing the statistics of a population of 18′984 local minima of
a cluster with N = 30 particles. A histogram of the distribution of local minima in energy is plotted
on the left graph. A suitable density curve for the normal distribution is also shown. It can be seen
that the envelope of the histogram differs slightly from the density of the normal distribution, having
a noticeable positive coefficient of asymmetry. The right graph shows a diagram of the scattering of
potential energies of locally equilibrium configurations of the cluster under consideration.

Table 3 provides a summary of the results of calculating the number of saddle configurations Nsc
of the potential energy of the cluster with a different number of N particles. When numerically solving

problem (11), it was assumed that L = 1
4

3
√

4
3πN, this is somewhat more than in previous calculations.

In addition, in all calculations for different values of N, it was assumed that M = 105, δ = 10−10,
δc = 0.05.

Figure 5. Histogram (left) and scatterplot (right) of energies of locally equilibrium configurations of cluster
particles at N = 30
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Table 3. The results of calculating the number of saddle configurations of potential energy for a different number
of particles in a cluster

N 2 3 4 5 6 7 8 12
Nsc — 2 4 15 � 77 � 536 � 4557 � 86′423

From a comparison of Table 3 with Table 2, it follows that the number of saddle configurations
is growing even faster than the increase in the number of configurations of local minima with an
increase in N. According to Table 3, a regression model was built to estimate the number of saddle
configurations, namely Nsc ∝ e0.947·N , N � 4, whose coefficient is significant at the level of no worse
then 2.22 · 10−11. A comparison of the two regression models shows that the coefficients in exponents
at N differ from each other by 2.90 times, i. e., roughly speaking, Nsc ∝ N2.90

lm .

Figure 6 shows the saddle configurations of two clusters with N = 4 and N = 5 particles in each.
Note that all four saddle configurations of a cluster consisting of four particles are flat shapes.

(a) All saddle configurations in a four-particle
cluster, N = 4

(b) All saddle configurations in a cluster with five
particles, N = 5

Figure 6

As in the case of equilibrium configurations, the relative interval of change in the potential
energies of saddle configurations κsc, calculated by the formula κsc =

2(max Usc−min Usc)
|max Usc+min Usc | was estimated.

It turned out that for N = 4, 5, 6, 7, 8, 12, the relative intervals of change in the energy of the saddle
points were κsc = 0.4464, 0.5857, 0.6544, 0.7018, 0.7835, 0.8152. Based on these data, the regression
dependence of the coefficient κsc on N. It turned out that κsc = 1.034 − 2.289

N , N � 4, where a pair of
coefficients of the regression model are significant at the level of no worse then 2.59 · 10−4. Thus, the
relative interval of change in the energy of saddle points with increasing N can be assumed to tend to
a certain constant value.

Note that in the numerical solution of problem (11), it was not possible to detect the presence
of local maxima in the Lennard – Jones binary potential. There were exclusively saddle configurations
and configurations of local minima.

4. Conformational transitions with binary potential

Consider the joint positioning of equilibrium configurations and saddle configurations, for
example, when N = 7. Taking into account Table 2 and Table 3 at N = 7, the number of equilibrium
configurations will be Nlm = 4, while the number of saddle configurations will be — Nsc = 536.
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Figure 7. Distribution of the number of positive and negative eigenvalues of the Hesse matrix of saddle
configurations (left); distributions of potential energies of saddle, Usc and locally equilibrium configurations,
Ulm (right)

Figure 7 on the left shows two distributions of the number of saddle points with the same
values of the number of positive pα = 6, . . . , 14 and negative mα = 1, . . . , 9 eigenvalues of the
Hesse matrix (12) for the selected number of particles in the cluster N = 7. Both distributions are
symmetric, because the equality was true for each saddle configuration pα+mα = 3N −6|N=7 = 15, α =
= 1, . . . , 536. Figure 7 on the right shows the distributions of potential energies of saddle (Usc, markers
in the form of dots) and locally equilibrium configurations (Ulm, markers in the form of pentagrams).
It can be clearly seen that the potential energies of locally equilibrium configurations lie below the
corresponding energies of saddle configurations. For convenience, all potential energies in groups of
saddle and locally equilibrium configurations are subordinated in ascending order.

Let us consider the question of the transformation of an arbitrary saddle configuration into
one or another equilibrium configuration, bearing in mind the effect of a force equal to the anti-
gradient of potential energy. We will denote by wi, i = 1, . . . , Nlm = 4 the number of saddle
configurations, which, after some variation of the initial configuration, under the action of an anti-
gradient of potential energy, turn into one, two, etc. equilibrium configurations. By some variation of
the initial configuration, it is understood that a small random vector θ{ξ1, . . . , ξ3N} was added to the

saddle configuration
{
x(sc)

1 , . . . , z(sc)
N

}
. Wherein it is considered that θ = 0.05 and a set ξ1, . . . , ξ3N —

uniformly random numbers from the interval [−1, 1]. The number of variations of saddle configurations
was chosen in proportion to the value 250pα, α = 1, . . . , Nsc = 536 and varied from 250 × 6 = 1500
to 250 × 14 = 3500. After each variation, gradient descent was applied by solving problem (10),
followed by reaching one of the four equilibrium configurations.

Figure 8 shows a typical calculation sample in the form of four graphs, on which straight lines
connect saddle and equilibrium configurations in four cases when one, two, three and four equilibrium
configurations are achievable from the saddle point, respectively. For this calculation, the number of
corresponding saddle configurations was: w1 = 26, w2 = 102, w3 = 194, w4 = 214, at the same
time w1 +w2 +w3 +w4 = 536. From the analysis of numerical frequency values, it can be seen that the
proportion of saddle configurations, of which a single equilibrium configuration is achievable, is a small
value ≈ 4.8 %. Of the majority of saddle points (≈ 76.1 %) three and four equilibrium configurations
are achievable. As in Figure 7, in Figure 8, saddle configurations are marked with markers in the form
of dots, while locally equilibrium configurations are marked with markers in the form of pentagrams.

We will define and study the mechanism of transformation of the cluster geometry, similar
to conformational fluctuations. The conformations of macromolecules were considered earlier [Бир-
штейн, Птицын, 1964]; currently this direction is under intensively developing in the context of
computational experimentation [Chakraborty, Banerjee, Wales, 2021].
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Figure 8. Ways of achieving equilibrium configurations from each saddle configuration in a cluster with N = 7

Let the excitation energy ΔE be transferred in some way to a locally equilibrium cluster lm0,
initially having one of the equilibrium configurations with energy Ulm0

. The new energy of the

cluster Ulm0
+ ΔE should enter the range [min Usc, max Usc], i. e. Ulm0

+ ΔE ∈ [min Usc, max Usc].

Taking into account Figure 8, it is clear that the energy range [min Usc, max Usc] is densely filled
with various saddle configurations. Let the new cluster configuration sc1 coincide with such a saddle
configuration, whose energy is closest to the energy Ulm0

+ΔE, i. e. Usc1
� Ulm0

+ΔE. For the transition

from the saddle configuration sc1 =
{
x(1)

1 , . . . , z(1)
N

}
to one of the locally equilibrium configurations,

problem (10) was solved, while randomly perturbed positions of the saddle configuration were
selected as initial positions according to the formula:

{
x(1)

1 + θξ1, . . . , z(1)
N + θξ3N

}
, where θ = 0.05,

ξ1, . . . , ξ3N are uniformly random numbers from the segment [−1, 1]. After entering one of the
equilibrium configurations lm1 with energy Ulm1

, the whole procedure was repeated. As a result,

a chain of conformational transitions was built: lm0 → sc1 → lm1 → sc2 → . . . The number of different
saddle configurations, which did not exceed the number of equilibrium configurations, amounted to the
number four for this particular case.

Figure 9 shows typical results of a computational experiment illustrating various formats of
conformational transitions in the form of “switches”. A switch is understood as a nonstationary
conformational oscillation in which equilibrium and saddle configurations from fixed sets are quasi-
periodically repeated. An arbitrary switch S p,q can be characterized by a pair of integers, where is the
number of equilibrium and saddle configurations p (p � 1) and q (q � 1) manifested in a conformational
oscillation.

The thickness of the arrows in Figure 9 illustrates the frequency of transition between cluster
configurations in a chain of conformational transitions, whose length in all calculations was 300. There
are also geometric miniatures of clusters in saddle (top) and locally equilibrium (bottom) formats.

Figures 9, a and 9, b shows the switches S 1,2 and S 2,2. At the same time, if in Figure 9, a
both locally equilibrium positions are achievable from one saddle configuration, then in the example
in Figure 9, b is from two. Finally, Figures 9, c and 9, d show examples of switches S 3,2, S 4,4.

5. Marking space using a multiparticle potential

Let us consider the marking of space using a multiparticle potential UN with maximum partiality.
Taking into account (4), (5), we write down the desired potential:

UN =
1
N

N∑

i=1

ϕN(qi) =
εN

N

N∑

i=1

φ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠, (13)
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(a) Switch S 2,1 (b) Switch S 2,2 (c) Switch S 3,2

(d) Switch S 4,4

Figure 9

where φ(r) = m
n−m r−n − n

n−m r−m, qi = |qi|, qi = ri − rcs, rcs =
1
N

N∑
j=1

r j — the center of symmetry of the

cluster particles. The parameter estimation q∗,N is given in the second section, namely q∗,N = 0.401 +

+ 0.129N1/3.
Let us define the procedure for searching for equilibrium configurations of cluster particles with

potential energy (13) by the gradient descent method, then

ẋi = −
∂UN

∂xi

= − εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (xk − xcs)

⎤⎥⎥⎥⎥⎥⎥⎦,

ẏi = −
∂UN

∂yi

= − εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (yk − ycs)

⎤⎥⎥⎥⎥⎥⎥⎦,

żi = −
∂UN

∂zi

= − εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (zk − zcs)

⎤⎥⎥⎥⎥⎥⎥⎦,

(14)

where μ(r) = φ′(r)
r =

nm
n−m

(
−r−n−2 + r−m−2

)
, it was believed that n = 12, m = 6.

A new quality was found when estimating the number of locally equilibrium configurations in
the multiparticle potential (13) by repeatedly solving the system of equations (14) at different values
of the number of particles in the cluster N. Starting from the value N = 4, the number of equilibrium
configurations turned out to be infinite, while they are not separated from each other. It also turned
out that the energy of each of the equilibrium configurations is the same and equal −εN. In the
calculations, it was assumed that εN = 1. Below we show that all equilibrium configurations in the face
of the positions of the cluster particles are located on a sphere, whose center corresponds to the center
of symmetry of the cluster, while the radius of the sphere is equal to q∗,N .

To illustrate the existence of an infinite number of equilibrium configurations, a series of
calculations of the system of equations (14) was performed to find the number of equilibrium
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configurations Nlm in a cluster of four particles, i. e., at N = 4. The parameter δc that separated one
equilibrium configuration from another varied within the framework of the corresponding criterion.

In all calculations, the initial positions of the cluster particles were selected uniformly randomly

from the cube [−L, L]3, where it was assumed that L = − 1
2 +

1
4

3
√

4
3πN. The number of calculations M of

the system of equations (13) for each of the parameter values δc was chosen equal 104. The parameter δ
in the gradient descent completion criteria was considered as equal to 10−10. According to Table 4, the
number of equilibrium configurations increases rapidly with decreasing parameter δc. This indicates
that there are infinitely many equilibrium configurations, which are not separated from each other.
Thus, unlike the binary potential, where the equilibrium configurations are separated from each other,
there are infinitely many nonseparated equilibrium configurations in the multiparticle potential.

Table 4. Dependence of the number of equilibrium configurations in a cluster with N = 4 on the parameter δc

δc 0.05 0.02 10−2 10−3

Nlm 25 114 386 7382

We illustrate the positioning of an infinite number of equilibrium configurations of a multiparticle
potential on the surface of a sphere with a radius q∗,N , whose center coincides with the center of
symmetry of the cluster. Let us make up the abbreviation of Lomonosov Moscow State University —
MSU from the positions of N = 114 cluster particles. Let us ensure that this, when chosen as the
initial configuration, leads to an equilibrium configuration obtained as a result of solving the system of
equations (14). Figure 10 shows the result in the form of a sphere of radius q∗,N , on whose surface the
points indicate the positions of the first 57 particles (Figure 10, a) and the second 57 (Figure 10, b), the
positions of which are distinguished by a sign. Straight lines connect the vertices, the distance between
which is in the vicinity of 0.1463.

(a) The locally equilibrium configuration of N =
= 114 particles, the positions of 57 of which
reproduce the abbreviation MSU

(b) The locally equilibrium configuration of N =
= 114 particles, the positions of 57 of which
reproduce the inverted abbreviation MSU

Figure 10

We define a procedure for searching for stationary (saddle) configurations of cluster particles
with potential energy (13) by the gradient descent method. To do this, we will solve the
problem (11), (12), where we take the multiparticle potential (13) as a potential. Let us write down the
expressions for the nine blocks of the Hesse matrix (12) of the multiparticle potential (13); then

∂2UN

∂xi ∂x j

=
εN

Nq2
∗,N

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)
2 + μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ δi, j −

1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)
2 −

− 1
N
μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ − 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (x j − xcs)
2 − 1

N
μ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠+
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+
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (xk − xcs)
2 +

1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

∂2UN

∂xi ∂y j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)(yi − ycs)δi, j −
1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)(yi − ycs)−

− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (x j − xcs)(y j − ycs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (xk − xcs)(yk − ycs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂xi ∂z j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)(zi − zcs)δi, j −
1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs)(zi − zcs)−

− 1

Nq2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (x j − xcs)(z j − zcs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (xk − xcs)(zk − zcs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂yi ∂x j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)(xi − xcs)δi, j −
1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)(xi − xcs)−

− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (y j − ycs)(x j − xcs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (yk − ycs)(xk − xcs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂yi ∂y j

=
εN

Nq2
∗,N

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)
2 + μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ δi, j −

1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)
2 − 1

N
μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠−

− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (y j − ycs)
2 − 1

N
μ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (yk − ycs)
2 +

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

∂2UN

∂yi ∂z j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)(zi − zcs)δi, j −
1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs)(zi − zcs)−

− 1

Nq2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (y j − ycs)(z j − zcs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (yk − ycs)(zk − zcs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂zi ∂x j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)(xi − xcs)δi, j −
1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)(xi − xcs)−
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− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (z j − zcs)(x j − xcs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (zk − zcs)(xk − xcs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂zi ∂y j

=
εN

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)(yi − ycs)δi, j −
1

Nq2
∗,N
χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)(yi − ycs)−

− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (z j − zcs)(y j − ycs) +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (zk − zcs)(yk − ycs)+

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦,

∂2UN

∂zi ∂z j

=
εN

Nq2
∗,N

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1

q2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)
2 + μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ δi, j −

1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs)
2 − 1

N
μ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠−

− 1

Nq2
∗,N

χ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ (z j − zcs)
2 − 1

N
μ

⎛⎜⎜⎜⎜⎝
qj

q∗,N

⎞⎟⎟⎟⎟⎠ +
1

N2q2
∗,N

∑

k

χ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (zk − zcs)
2 +

+
1

N2

∑

k

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭,

where χ(r) = μ′(r)
r =

n(n+2)m
n−m r−n−4 − nm(m+2)

n−m r−m−4.

Table 5. Dependence of the number of saddle configurations in a cluster with N = 4 on the parameter δc

δc 0.05 0.02 10−2 10−3

Nsc 337 1235 2811 9324

As it turned out, as a result of solving problem (11), (12) with potential (13) at N = 4, the number
of saddle points is infinite. To illustrate the latter statement, Table 5 shows the results of a computational
experiment on counting the number of saddle points Nsc by solving problem (11)–(13).

In all calculations, the initial positions of the cluster particles were selected uniformly randomly

from the cube [−L, L]3, where it was assumed that L = 1
4

3
√

4
3πN. The number of calculations M

of the system of equations (11)–(13) for each of the parameter values δc was chosen equal 104.
The parameter δ in the gradient descent completion criteria was considered equal 10−4. According
to Table 5, the number of saddle configurations is growing rapidly with decreasing parameter δc. This
indicates that there are infinitely many saddle configurations and that they are not separated from each
other. As a criterion for the selection of saddle stationary points, the number of negative eigenvalues
of the Hesse matrix of potential energy (12) at a stationary point was calculated; this number should
be greater than zero.

To illustrate the positioning of saddle points relative to a sphere (radius q∗,N), on which
locally equilibrium configurations of potential energy (13) are concentrated, a cluster with N = 50
was considered. The search for saddle stationary points in the cluster was carried out in a series
of M = 200 computational experiments to solve the problem (11)–(13). The choice of the remaining
parameter values, including the choice of the initial positioning of the cluster particles, corresponded
to the choice of the parameter values of the previous task.
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Figure 11 shows the result of the calculations in the form of two distributions of the positions
of the cluster particles. The distributions with minimum and maximum potential energy values in the
considered series of calculations are shown on the left and right. It can be clearly seen that the particles
move away from the sphere as the potential energy increases. Note that the potential energy values
are given in relative terms when it is assumed that the potential energy parameter εN = 1. Blue and
black straight lines connecting the positions of the cluster particles are drawn for the convenience of
depicting the cluster as a whole. The lengths of the blue and black edges are less than one and between
one and two, respectively.

Figure 11. Mutual positioning of saddle and locally equilibrium configurations of cluster particles with N = 50

6. Examples of particle dynamics with a multiparticle potential

Let us consider the dynamics of cluster particles, taking into account the specifics of the
multiparticle potential. Let at time t, t ∈ [0, T ] some locally equilibrium configuration xi(t), yi(t),
zi(t), i = 1, . . . , N of the positions of the cluster particles be determined by solving the system of
equations (14). In this case, the positions of the particles lie on the surface of a sphere of radius q∗,N ,
while the center of the sphere coincides with the center of symmetry of the cluster.

Consider the following scheme of random effects on the positions of cluster particles:

xi → x′i = xi + ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎝ξi −
1
N

N∑

j=1

ξ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + NΔx,

yi → y′i = yi + ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎝ηi −
1
N

N∑

j=1

η j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + NΔy,

zi → z′i = zi + ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎝ζi −
1
N

N∑

j=1

ζ j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + NΔz,

where i = 1, . . . , N, ρ — a small non-negative number, the amplitude of a random disturbance, ξ, η, ζ —
uniformly random numbers from the segment [0, 1]; the vector Δr = (Δx, Δy, Δz) can be interpreted
as the displacement vector of the cluster as a whole. We solve the system of equations (14) again,
choosing as the initial particle distribution the values x′i , y′i , z′i , i = 1, . . . , N. The found equilibrium
positions of the particles xi(t + 1), yi(t + 1), zi(t + 1), i = 1, . . . , N also lie on the surface of the sphere,
they are considered as the next step in the dynamics of the cluster particles. Repeating the above
procedure many times, we will construct the dynamics of the cluster particles.

Let the displacement vector of the cluster particles as a whole be absent at the beginning,
i. e., Δr = 0. In this case, it should be expected that the cluster particles will randomly wander along
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the surface of the sphere, radius q∗,N . Figure 12 shows an example of calculating the dynamics of
cluster particles when it was assumed that N = 50, ρ = 0.05, T = 103. As the initial distribution xi(0),
yi(0), zi(0), i = 1, . . . , N the positioning of the cluster particles on a circle was chosen. In Figure 12, a
and Figure 12, b, the initial positions of the cluster particles are marked with markers in the form of
bold black dots. Figure 12, a shows the initial positioning of the cluster particles, as well as the further
dynamics of three random particles from N. The trajectories of each of the three particles can be seen
to randomly wander around the sphere. Figure 12, b shows the trajectories of all cluster particles.

(a) Trajectories of three randomly selected cluster
particles, N = 50

(b) Trajectories of all cluster
particles, N = 50

Figure 12

The results of the computational experiment in Figure 12 demonstrate that the cluster particles,
initially concentrated on a circle, tend to be quasi-uniformly distributed over the surface of the sphere,
while the sphere as a whole is at rest.

Consider the motion of cluster particles for the case when the displacement vector Δr of the
cluster as a whole is different from zero. To illustrate this case, we assume that the displacement
depends on time and corresponds to a curve on the plane called the Bernoulli Lemniscate, which in
appearance corresponds to the infinity symbol “∞”. In this regard, let us assume that Δr = (LBx(t +
+ 1) − LBx(t), LBy(t + 1) − LBy(t), 0), where a pair of functions LBx(t), LBy(t), defines a parametric

entry of the Bernoulli Lemniscate, when LBx(t) = ρ
cos 2πt

T

1+sin2 2πt
T
, LBy(t) = ρ

sin 2πt
T cos 2πt

T

1+sin2 2πt
T

, t ∈ [0, T ].

Figure 13. Movement of a cluster of particles along a curve close to the Bernoulli Lemniscate, N = 100

Figure 13 shows an example of a numerical implementation of cluster dynamics, provided
that N = 100, ρ = 0.05, T = 35 and that the displacement of cluster particles followed the Bernoulli
Lemniscate. The trajectories of the cluster particles are given for the convenience of perception, spheres
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are constructed for each of the time points on which the positions of the equilibrium configurations of
the cluster particles are located.

7. Marking the space using a combined potential

Let us consider the layout of the configuration space using a combination of binary U2 and
multiparticle potential UN with maximum partiality. Taking into account (2), (4), (5) let us write down
the desired potential:

U2,N =
ε′2
2

N∑

i, j=1 (i� j)

φ(ri, j) +
ε′N
N

N∑

i=1

φ

⎛⎜⎜⎜⎜⎝
qi

q∗,N

⎞⎟⎟⎟⎟⎠, (15)

where φ(r) = m
n−m r−n − n

n−m r−m, qi = |qi|, qi = ri − rcs, rcs =
1
N

N∑
j=1

r j — the center of symmetry of the

cluster.

Within the framework of the combined potential (15), it is necessary to determine the choice
of a pair of parameters ε′2 and ε′N . In section No. 3, devoted to the description of the cluster using
a binary potential U2, it was assumed that ε′2 = ε2 = 1. In section No. 5, where the multiparticle
potential UN was studied, it was assumed that ε′N = εN = 1, at the same time, the potential value UN
for all equilibrium configurations was −1. If we assume that the interaction of particles in a cluster
is described only by a multiparticle potential UN , then it is necessary that the value of potential
energy UN in locally equilibrium configurations correspond to the characteristic values of potential
energy, which we find after averaging the potential energies of locally equilibrium configurations with
a binary potential.

Table 6. The average values of the potential energies of the equilibrium positions of the binary Mie potential
(n = 12, m = 6) depending on the number of particles in the cluster N

N 2 3 4 5 6 7 8 12 15 20 25 30 50 100

−U2 ≈ 1 3 6 9 13 16 19 34 48 72 98 124 234 531

Thus, assuming that UN � U2, where U2 is the average value of the potential energies of locally
equilibrium configurations of the binary potential of Mi, we find εN = −U2. Table 6 shows the values
of the average potential values of the locally equilibrium positions of the binary potential, depending
on the number of particles in the cluster.

According to Table 6, a suitable regression curve εN = 2.663N + 0.170 · N1.6, N � 2 was
constructed, whose the coefficients are highly significant at a level not less than the value 6.8 · 10−8.

As a result, it turns out that the cluster can be described both in terms of binary and multiparticle
potentials. After taking into account the dependence εN = 2.663N+0.170 ·N1.6 on N both potentials U2
and UN become comparable and can be mutually combined, e. g., according to the additive scheme,
when it is assumed that

ε′2 = ε2(1 − σ) = 1 − σ, ε′N = σεN = σ
(
2.663N + 0.170 · N1.6

)
, (16)

where σ ∈ [0, 1] — a parameter describing the proportion of the multiparticle potential in the cluster
description.
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Let us define the procedure for searching for locally equilibrium configurations of cluster
particles with potential energy (15) according to scheme (16) by the gradient descent method, i. e.

ẋi = −
∂U2,N

∂xi

= −ε′2
∑

k�i

μ(ri,k)xi,k −
ε′N

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (xi − xcs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (xk − xcs)

⎤⎥⎥⎥⎥⎥⎥⎦,

ẏi = −
∂U2,N

∂yi

= −ε′2
∑

k�i

μ(ri,k)yi,k −
ε′N

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (yi − ycs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (yk − ycs)

⎤⎥⎥⎥⎥⎥⎥⎦,

żi = −
∂U2,N

∂zi

= −ε′2
∑

k�i

μ(ri,k)zi,k −
ε′N

Nq2
∗,N

⎡⎢⎢⎢⎢⎢⎢⎣μ
⎛⎜⎜⎜⎜⎝

qi

q∗,N

⎞⎟⎟⎟⎟⎠ (zi − zcs) −
1
N

N∑

k=1

μ

⎛⎜⎜⎜⎜⎝
qk

q∗,N

⎞⎟⎟⎟⎟⎠ (zk − zcs)

⎤⎥⎥⎥⎥⎥⎥⎦,

(17)

where μ(r) = φ′(r)
r = nm

n−m

(
−r−n−2 + r−m−2

)
. In the calculation results presented below, it was assumed

that n = 12, m = 6.
Table 7 shows the results of a computational experiment to calculate the number of locally

equilibrium configurations Nlm in a cluster consisting of N = 12 particles. In each of their
experiments M = 3 · 105 calculations of the system of equations (17) with random initial positions

of the cluster particles were performed. It was also assumed that L = − 1
2 +

1
4

3
√

4
3πN, δ = 10−10,

δc = 0.05.

Table 7. Dependence of the number of equilibrium configurations on the proportion of the multiparticle potential,
N = 12

σ 0 0.01 0.25 0.5 0.75 1 − 10−2 1 − 10−4 1
Nlm 358 285 156 93 42 5 1 ∞

According to the results of the computational experiment presented in Table 7, by varying the
proportion σ of the multiparticle contribution to potential energy, it is possible to vary the number
of equilibrium configurations in the cluster up to the construction of a single configuration. The
implementation of a single equilibrium configuration means that over time, with arbitrary shaking
of the positions of particles in the cluster, they occupy well-defined positions, while the equilibrium
configuration as a whole is invariant with respect to shifts and rotation of the cluster as a whole.

Figure 14 shows the results of calculating a cluster with the number of particles N = 50 in two
cases when σ = 1 − 10−6 and σ = 1. It is clear that the spherical shape of the cluster is provided by
the main contribution to the potential of the multiparticle component. In Figure 14, a, a more or less
uniform arrangement of particles on the sphere is ensured by a binary contribution to the potential. In
Figure 14, b, the random distribution of particles on the sphere is, determined by the initial random
positioning of particles when solving the problem (17). A graph of one of an infinite number of possible
locally equilibrium configurations is given. The lines highlight those segments whose length does not
exceed 0.85.

The study of the dependence of the number of saddle configurations on the parameter σ was
carried out using the example of several clusters with N = 3, 4, 5. The problem (11), (12) with

a combined potential energy (15) has been repeatedly solved, provided that L = 1
4

3
√

4
3πN. For a cluster

with N = 3, the number of saddle configurations turned out to be several units, when σ ∈ [0, 1], at the
same time, it was assumed that δ = 10−10, δc = 0.05. For clusters with N = 4, 5 the number of saddle
configurations was finite at σ ∈ [0, 1), δ = 10−10, δc = 0.05. The number of saddle configurations
became infinite at σ = 1, it was assumed that δ = 10−4. Apparently, the same pattern will remain for
all other clusters with N > 5 as for clusters with N = 4, 5, i. e., at σ ∈ [0, 1) the number of saddle
configurations will be finite, while for σ = 1 — the number will be infinite.
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(a) A single equilibrium configuration
in the case when N = 50, σ = 1 − 10−6

(b) One of the possible locally
equilibrium configurations in the case
when N = 50, σ = 1

Figure 14

8. Conclusion

The paper presents a formulation and some approaches to the problem of choosing a solution
in the classical format of describing a molecular system. The classical format of description in terms
of molecular dynamics and the potential energy function provides an understandable way to choose
a particular solution or, stated otherwise, a way to mark up the configuration space with a set of
stationary points of the potential energy function. The marking of the configuration space using the
potential energy function can be used in the problem of choosing a solution in the quantum mechanical
format of describing a molecular system, for example, in connection with the theory of quantum
measurement.

The choice of one or another markup of the configuration space is related to the following
two physical and mathematical problems. A direct selection problem arises when the potential energy
function is given and a set of stationary points is obtained from it. Conversely, the inverse choice
problem occurs when a set of stationary points is given and it is necessary to reconstruct the
corresponding potential energy function from it. The present work considers the direct problem of
choice.

The potential energy function of a monatomic molecular system from a set of multiparticle
contributions has been constructed along with an algorithm defined for constructing a spectrum of
multiparticle potentials. The features of the configuration space markup using a binary potential and
a multiparticle potential of maximum partiality are considered in detail. If the number of stationary
points is large but finite at a binary potential, the set of stationary points can be infinite at a multiparticle
potential under certain conditions. When combining binary and multiparticle potentials, the possibility
of influencing the markup of the configuration space by changing the number and location of stationary
points is demonstrated.
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