
COMPUTER RESEARCH AND MODELING
2024 VOL. 16 NO. 7 P. 1637–1650
DOI: 10.20537/2076-7633-2024-16-7-1637-1650

SPECIAL ISSUE

UDC: 004

Deriving specifications of dependable systems

M. Mazzara

Innopolis University,
1 Universitetskaya st., Innopolis, 420500, Russia

E-mail: m.mazzara@innopolis.ru

Received 28.10.2024, after completion — 12.11.2024
Accepted for publication 25.11.2024

Although human skills are heavily involved in the Requirements Engineering process, in
particular, in requirements elicitation, analysis and specification, still methodology and formalism play
a determining role in providing clarity and enabling analysis. In this paper, we propose a method for
deriving formal specifications, which are applicable to dependable software systems. First, we clarify
what the method itself is. Computer science has a proliferation of languages and methods, but the
difference between the two is not always clear. This is a conceptual contribution. Furthermore, we
propose the idea of Layered Fault Tolerant Specification (LFTS). The principle consists in layering
specifications in (at least) two different layers: one for normal behaviors and others (if more than one)
for abnormal behaviors. Abnormal behaviors are described in terms of an Error Injector (EI), which
represent a model of the expected erroneous interference coming from the environment. This structure
has been inspired by the notion of an idealized Fault Tolerant component, but the combination of LFTS
and EI using rely guarantee thinking to describe interference is our second contribution. The overall
result is the definition of a method for the specification of systems that do not run in isolation but in
the real, physical world. We propose an approach that is pragmatic to its target audience: techniques
must scale and be usable by non-experts, if they are to make it into an industrial setting. This article
is making tentative steps, but the recent trends in Software Engineering such as Microservices, smart
and software-defined buildings, M2M micropayments and Devops are relevant fields continue the
investigation concerning dependability and rely guarantee thinking.

Keywords: formal methods, dependability

Citation: Computer Research and Modeling, 2024, vol. 16, no. 7, pp. 1637–1650.

© 2024 Manuel Mazzara
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1638 M. Mazzara

Introduction

The material collected in this article has been facilitated by the experience accumulated in
working as a software and requirements engineer, working with formal methods and teaching related
disciplines at several universities. We have realized that there is a long tradition of approaching
Requirements Engineering (RE) by means of formal or semi-formal techniques [Bruel et al., 2022].

In this article, we ask: how many of the current formal notations used in Requirements and
Software Engineering are paired with an effective and clear methodology to apply them? In our
experience, this is the most common obstacle in deploying such ideas in industry (admitting exceptions
in specific fields). This article refers directly to the work done in [Jones, Hayes, Jackson, 2007], where
the original idea of a formal method for the specification of systems running in the physical world
originated.

In Section “Background”, we present the background that led to this paper’s ideas and approach.
In Section “Method”, we define a set of desiderata that we believe a method should have and we
structure the method introduced by [Jones, Hayes, Jackson, 2007] according to the properties described
earlier. In Section “A case study”, we present a train case study taken from [Abrial, 2010]. Section
“LFTS” introduces the idea of Layered Fault Tolerant Specification (LFTS) and Section “Conclusions”
draws final conclusions.

Background

In this section, we present the (philosophical) background that led to our ideas and approaches
in this article. More details can be found on an up-to-date survey [Bruel et al., 2022].

Although human skills are heavily involved in the Requirements Engineering process, in
particular, in requirements elicitation, analysis and specification, still methodology and formalism play
a determining role [Bruel et al., 2022] in providing clarity and enabling analysis. The first thing we
realized in building dependable software is the necessity to enable dependable communication between
parties that use different languages and vocabulary (i. e., avoid being “lost in translation” between
socio-technical domains). In order for systems to match expectations (and specifications), we need
a precise mapping between intentions and actions.

Object Oriented Design [Meyer, 2009] and Component Computing [Szyperski, 2002] are well
known examples of how rigor and discipline can improve the quality of software artifacts. The success
of languages like Java or C# can be interpreted in this sense. It is also true — and it is worth reminding
it — that in many cases it has been the language and the available tools on the market that forced
designers to adopt object orientation principles and not vice versa.

Semiformal notations like UML [Booch, Rumbaugh, Jacobson, 2005] helped in creating
a language that can be understood by both experts and nonspecialists, providing views of the system that
can be negotiated between different stakeholders with varied backgrounds. The power and flexibility of
UML is also its limitation: the absence of an agreed formal semantics. Attempts of formalizing subsets
of UML have never led to a complete and standardized semantics for it [Li, Liu, Jifeng, 2004; Liu et
al., 2013].

Pairing UML with OCL [Organization, 2014] makes UML closer to more formal approaches,
but it still lacks a fully rigorous notation and method.

Many other formal/mathematical notations existed for specifying and verifying systems like
process algebras [Baeten, 2005] or specification languages like Z [Woodcock, Davies, 1996], B [Abrial,
1996] and Event-B [Abrial, 2010]. The Vienna Development Method (VDM) is one of the first attempts
to establish a Formal Method [Bicarregui et al., 1994]. All these notations are specific and can be
understood mostly by specialists. These formalisms are formal or semiformal notations. Behind each
of them there is a way of structuring thinking that does not offer complete freedom and hence forces

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1639

designers to adhere to some discipline. Still, they are not methods in the sense described in Section
“Method”: they are languages.

All these aspects have been discussed in a recently published [Bruel et al., 2022]. The
wide spectrum from informal to semiformal and formal are discussed, including methodological
considerations. The goal of this paper is instead to focus primarily on the formal parts of that spectrum.

The overall result is the definition of a method for the specification of systems that do not run
in isolation but in the real, physical world. To accomplish this task we go through a number of steps,
concepts and tools. The first step, the most important one, is the concept of a method itself, since
we realized that computer science has a proliferation of languages, but few methods. In the following
sections, we put emphasis on the difference between methods and languages and, as a consequence,
between formal methods and formal languages.

Method

This section defines the desiderata for the method. We reached these ideas in an attempt to
understand what a method is. Firstly, we think it is important to distinguish between the words method
and methodology. The Webster’s dictionary says “a method is a way, technique, or process of or for
doing something”. This definition depends on “a series of actions or operations conducing to an end”.
The word methodology can also be used to intend “a particular procedure” but the general meaning
is “the analysis of the principles of methods [. . .] employed by a discipline”. Although in computer
science it is common practice to use the word formal methods to intend formal languages, in this paper
we use the word method only to intend the final result of a methodological study related to a specific
context: software systems specification.

To properly understand what a method is and what it is not, we explored an example by
Descartes [Descartes, 1950]. We are interested in understanding how Descartes perceives a method and
what is particular to it. From [Descartes, 1950], we realize that a method proposes a partially ordered
set of actions that need to be performed and then discharged within a specific causal relationship. The
success of one action determines next steps. This suggested to us that the method we propose needs to
satisfy a number of properties. The first three are taken directly from Descartes’ method, while the last
three are from our experiments with case studies. Our understanding of the method of science is that:

1. It has to consist of steps to acquire knowledge;

2. It has to be formally defined (i. e., phases, steps, workflows);

3. It has to be repeatable by nonformal methods experts.

Then our practical experience has suggests that:

1. It has to be scalable (not ad hoc — it has to work outside specific case studies);

2. It needs abstractions (focus on “what” and not “how”);

3. It has to be extensible to fault tolerant behaviors.

We have asked ourselves: why do we need a method? The interesting point is a meta question.
The logic is what is done inside the system, in this case the formal steps performed (in some order)
to reach the desired end. The reasoning is what is done outside the system, experimenting and seeing
what happens if we change the basic rules. Reasoning about the method gives us a way to find out the
motivations leading to a method definition. The first step in building dependable software is building
dependable communication between parties in different fields that have different languages/vocabulary.
According to the definition of communication [DeFleur et al., 2004], formal methods in system

2024, Т. 16, № 7, С. 1637–1650

1640 M. Mazzara

specification are tools to commit to dependability, help clarify vocabulary and provide a notation
able to build a precise mapping between intentions and actions in the different stakeholders’ minds.

This paper focuses especially on [Jones, Hayes, Jackson, 2007], where the original idea of
a formal method for the specification of systems running in the physical world originated. We think
an approach that is pragmatic to its target audience is urgent: techniques must scale and be usable
by nonexperts if they are to make it into an industrial setting. Thus, the goal of this work is to take
the mindset behind the ideas in [Jones, Hayes, Jackson, 2007] accessible and fit them to their target
audience industries.

The idea in [Jones, Hayes, Jackson, 2007] is to specify a system not in isolation, but considering
its environment and deriving the final specification from a wider system, where assumptions have
been understood and formalized as layers of rely conditions. The difference between assumptions and
requirements is crucial, especially when considering the proper fault tolerance aspects, as follows:

• Not specifying the digital system in isolation;

• Deriving the specification from a wider system in which physical phenomena are measurable;

• Assumptions about the physical components can be recorded as layers of rely-conditions (starting
with stronger assumptions and then weakening when faults are considered).

This approach allows us to see a computer system from a different angle, as not consisting of functions
performing tasks in isolation but as relationships (interfaces/contracts) in a wider context including
both the machine and the physical (measurable) reality.

This philosophy has been partly inspired by Jackson’s problem frames approach to software
requirements [Jackson, 2007]. The machine can only operate through sensors and actuators. We want
to derive the specification of the software starting by taking the wider environment of its use into
account. We record these assumptions in what follows.

The method and its steps

In this work, we interpret [Jones, Hayes, Jackson, 2007] according to the views described in the
previous section by recognizing three main steps:

1. Define boundaries and dependencies of a system;

2. Expose and record assumptions (by means of rely-conditions);

3. Derive a formal specification.

Our idea is to not commit to a single language/notation. These steps are only reference tools that
are suggested to designers: our main objective is to improve their capabilities through the assistance of
a variety of formal notations suitable to each target application. In this work, we want to expand the
work done in [Jones, Hayes, Jackson, 2007].

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1641

Rely/Guarantee thinking and interference

Rely/Guarantee (R/G) thinking is an idea beyond the formalism. To understand its expressive
power, it is necessary to realize how pre- and postconditions can help in specifying a software program
when interference does not play a role. What we have to describe are:

1. The input domain and the output range of the program;

2. The precondition, what we expect to be true at the beginning of the execution;

3. The postcondition, what will be true at the end execution provided that the precondition holds.

Pre- and postconditions represent contracts between parties: provided that you (the environment,
the user, another system) can ensure the validity of a certain condition, the implementation modify
the state in such a way that another known condition holds. We show the example of a very simple
program, which in natural language can be:

“Find the smallest element in a set of natural numbers”

This simple natural language sentence tells us that the smallest element has to be found in a set of
natural numbers. So the output of our program has necessarily to be a natural number (N). The input
domain and the output range of the program are then easy to describe:

I/O : P(N)→ N .

Now, the input is expected to be a set of natural numbers, but in order to be able to compute the
minimum element, such that a set has to be nonempty, since the minimum function is not defined for
empty sets. So, the precondition is that is that the input set is non-empty. This could also be defined
through the function type as:

I/O : P1(N)→ N .
Provided that the input is a nonempty set of natural numbers, the implementation is able to compute
the minimum element, which is the one satisfying:

Q(S , r) : r ∈ S ∧ (∀e ∈ S)(r � e).

That is, for any input set S the result r must be the smallest element in that set. Given this rule, the input-
output relation is given by the following predicate that needs to be satisfied by any implementation f :

∀S ∈ P1(N)(P(S)⇒ f (S) ∈ N ∧ Q(S , f (S))).

This is an example of a proof obligation associated with the design to be discharged later by the
specifier.

To better understand the limitations of this kind of abstractions, consider the case of an
implementation with interference happening through a global state, where two processes alternate
their execution and access to the global state. It can consist of shared variables or can be a queue of
messages, as described in [Jones, 1983]. In case we consider interfering processes, we need to accept
that the environment can alter the global state, but the idea behind R/G is that we impose constraints
to these changes. Any state change made by the environment (other concurrent processes with respect
to the one we are considering) can be assumed to satisfy a condition R (rely) and the process under
analysis can change its state only in such a way that observations by other processes consist of pairs of
states satisfying a condition G (guarantee). Thus, the process relying on the fact that a given condition

2024, Т. 16, № 7, С. 1637–1650

1642 M. Mazzara

holds can guarantee another specific condition. For example, the two following concurrent pieces of
code calculates the Greatest Common Divisor:

P1: P2:

while(a<>b){ while(a<>b){

if(a > b) if(b > a)

a := a-b; b := b-a;

} }

P1 is in charge of decrementing a, and P2, of decrementing b. When a = b evaluates to true, it means
that one is the Greatest Common Divisor (GCD) for a and b. The specification of the concurrent
interfering interactions is as follows:

R1 : (a = a) ∧ (a � b⇒ b = b) ∧ (GCD(a, b) = GCD(a, b)), R2 = G1,

G1 : (b = b) ∧ (a � b⇒ a = a) ∧ (GCD(a, b) = GCD(a, b)), G2 = R1.

Here the values a and b are used instead of a and b when we want to distinguish between the values
before and after the execution. P1 relies on the fact that P2 is not changing the value of a and that
(a � b) means no decrements for b have been performed. Furthermore, the GCD did not change. What
is a guarantee for P1 becomes a rely for P2 and vice versa.

A case study

In this section, we show a case study in which we applied the method discussed earlier. It
is taken from [Abrial, 2010], the train system, where the goal was to show the power of modeling
and formal reasoning through Event-B. We chose this scenario since we believe it is realistic (it has
been developed after some work with real train systems) and still manageable (with a limited set
of initial requirements: 39). This case study taught us how to distinguish between assumptions and
requirements and helped us in finding a better structure for the method initially presented in [Jones,
Hayes, Jackson, 2007]. We show here how this example can be approached with the three step method.
The first thing to do is determining the bounds of specification (Step 1). We then show how the
boundaries can be broadened to include the external world. In the second step, we discuss how to
separate assumptions and requirements, how to expose and record assumptions and how different sets
of requirements and assumptions imply a different specification and implementation. In the third step,
we assume the existence of an already designed network infrastructure (with sensors, actuators, etc.) to
show a specific example of an implementation. At the end, we show how to make use of rely conditions
for this specific implementation. What is important to realize is the way in which the interference over
a global state is considered using the approach shown in the small GCD example. The specification is
presented after a discussion about the way in which it has been obtained, and the interaction between
the different operations constrained in a similar way, but in a system with a potentially higher level of
concurrency.

Step 1: defining the system’s boundaries

First, clarify the real-world requirements before trying to specify their software system. This
process naturally identifies assumptions about the physical components, which can then be recorded
as rely-conditions. One of the main principles of this approach is not specifying a system in isolation,
but starting to move the system boundaries outwards; what is called “pushing out the boundaries of
the system” in [Jones, Hayes, Jackson, 2007]. What is the wider system in which physical phenomena

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1643

are measurable? What is the actual general purpose of the Train System? We believe it allows trains to
move safely from a place X to a place Y. How does this help us in identifying the system requirements?
We can recognize that the FUN-1 requirement of the system specification [Abrial, 2010] expresses this
need as:

“The goal of the train system is to safely
control trains moving on a track network.”

If we move the boundary outwards, we can say that the purpose of the system is to allow people
to reach their destination safely. Considering this we could split FUN-1 into two properties (without
referring to any implementation):

• Safety property: nothing bad can happen;

• Liveness property: something good has to happen.

We can express these two properties for this example as:

• Safety: Trains will never collide;

• Liveness: Trains will move from their origin to their destination.

Req FUN-1 is general enough to allow this separation. We are interested in modeling only
the safety property, hence delegating liveness to a scheduler or, theoretically, to manual management
performed by operators/engineers. All other requirements in [Abrial, 2010] refer to concepts like blocks,
routes and signals that can describe either a set of assumptions about the environment or a specific
implementation of FUN-1.

Step 2: exposing and recording assumptions

Now it is crucial to discriminate between requirements for the system and assumptions about
the real world. In this example, it was important to ask if we are in charge of designing the whole
railway/track with sensors, signals, etc. or not. If not, many of the requirements can be considered as
assumptions taken from the already existing environment (for example, the ENV group of requirements
in [Abrial, 2010]). Otherwise, they can still be seen as requirements, but referring to a specific
implementation. For example, the requirement ENV-13:

“A signal can be red or green. Trains are supposed to stop at red signals.”

is an example of how requirements and assumptions can be (in our opinion erroneously) mixed in the
same statement. So determining the assumption (and being able to separate them from requirements)
is the main goal of this step. In this example, we suppose to be the designer of the whole track and we
want trains to move from city X to city Y. The simplest possible implementation of this requirement is
that we do not allow any train to cross the network at any time. This is an implementation where the
Safety property is preserved (but the Liveness property might not). Although we are interested mainly
in the Safety property, a better thing to do is to allow only one train on the track between X and Y. This
means that the rail connecting two cities is reserved for a single train. Obviously, this implementation
respects both the Safety and Liveness properties described above. Nevertheless, it is easy to realize that
it is simply unfeasible because of the low efficiency/exploitation of available resources.

An alternative implementation is the one in [Abrial, 2010]. The scope here is different from what
has been done there. For this reason, we did not assume this implementation as given, but we wanted to
go through its entire discussion. The point was learning the lesson about determining wider boundaries,
including the external environment, and distinguishing between requirements and assumptions. Figure 1
represents an example of the infrastructure. It is made of:

2024, Т. 16, № 7, С. 1637–1650

1644 M. Mazzara

1. Blocks: a track is made of a number of fixed blocks;

2. Routes: blocks are always structured in a number of statically predefined routes. Each route
represents a possible path that a train may follow. Routes define the various ways a train can
cross the network. A route is composed of a number of adjacent blocks forming an ordered
sequence. For example, a route consisting of blocks LABDKJN is possible in Fig. 1.

3. Points: a track contains special components allowing blocks to be linked to each other. A point
may have two positions: directed or diverted. These components are attached to a given block.
And a block contains at most one special component. In Fig. 1, B and D both contain points,
and C does not.

4. Signals: each route is protected by a signal (Red/Green). It is situated just before the first block of
each route and it must be clearly visible by train drivers. When a signal is red, the corresponding
route cannot be used by an incoming train.

Figure 1. The network infrastructure. Green boxes represent Blocks of which a track is made and they are
indicated with capital letters. Blocks B, D, F, K, I and J contain points

The idea is to have each block of a reserved route freed as soon as the train does not occupy it
anymore. In the next section, we focus on the reserving routes system, i. e., the process of reserving
a route on a train request, freeing it and letting the train occupy, block by block, freeing each block
when passed.

We have also decided to abstract over concepts like time or distances, since the underlying
block-based infrastructure ensures that we never have two trains in the same block to avoid collisions.
This abstraction simplifies our work without being in contradiction with the original philosophy of
grounding the system in the physical world. We have only decided that the border between the system
and the real world consists of the sensors and actuators necessary to make such an infrastructure work.
We have also decided to focus on Safety properties. We assume that Liveness properties are managed
by a scheduler, which is another system already running. A graph structure would be probably more
adequate it we wanted to focus on the scheduler having Liveness coming into play, since in the present
representation the network is seen as a set of routes from which you cannot infer which one is adjacent
to the other.

Step 3: deriving the formal specification

Now we define the basic machinery for the formal specification. We need four (non-empty) finite
sets as:

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1645

• T, a finite set of trains, where t ∈ T ;

• B, a finite set of blocks, where b ∈ B;

• R, a finite set of routes, where r ∈ R;

• P, a finite set of points, where p ∈ P.

The safety requirement is modeled as a total function mapping blocks to trains: B→ T (train).
This is how we impose to have a single train on a block. To avoid collisions by trains, we also
need a way to associate trains to routes, once the train has reserved a specific route. We use the
function: T → R (route). A route is then composed by blocks, at least one: R → B+ (blocks)
and in a route a block has the next element: B → B (next). Blocks can be free or occupied:
B→ { f ree, occupied} (status) and are associated to points: B → P (point) that can be oriented
in two different ways: P → {directed, diverted} (direction). Routes can be available or reserved:
R → {available, reserved} (availability) and each route is associated with a predefined points
orientation: R → (P → {directed, diverted}) (orientation). We rely on the fact that the sensors
with which a block is equipped can always detect the presence of a train (for B→ T). We assume that
if we want to reserve a point, it is promptly positioned. We rely also on the fact that each route has the
first block: R→ B(f irst), the last block: R→ B(last), and that they are different: f irst(R) � last(R).

The mathematical machinery defined so far can be considered part of the global state on which
the five operations we define operate: they are related to the process of route reservation and freeing
plus the entrance, proceeding and exiting of a train to and from a route. These are the operations
concerned with the specification of our safety requirement. Liveness is not discussed, we only move
a train from one end of a route to the other without investigation about the way in which the routes
were previously organized. For each operation, the notation below indicates the data needed, what we
expect from that data and the way in which the global state is modified.

Operation RouteReserving (t : T, r : R)

Rely availability(r) = available ∧
∧ ∀b ∈ blocks(r) (status(b) = f ree)

Guarantee availability(r) := reserved

∀b ∈ blocks(r) (status(b) := occupied)

route(t) := r

∀p ∈ P (direction(p) := orientation(r)(p))

Given a train and a route, this operation guarantees three mappings to be properly updated, provided
that the given route is available and the related blocks are free. The three mappings are first the one
between points and directions, second the ones between trains and routes (as a record of the overall
track status) and last the association between blocks and their occupancy status. These represent the
part of the global state of interest for this operation.

Operation RouteFreeing (t : T)

Rely ∀b ∈ blocks(route(t)) (status(b) = f ree)

Guarantee availability(route(t)) := available

route(t) := null

Given a train, the related route is identified. The effect on the state is a modification of the mapping,
where the train is associated to the null route and, provided that all the blocks in the route are free, the

2024, Т. 16, № 7, С. 1637–1650

1646 M. Mazzara

route itself can be freed. This operation has a simpler definition with respect to the reservation because
the blocks are freed by the ExitRoute, while the points direction does not need to be modified when
freeing a route.

Operation EnterRoute (t : T)

Rely availability(route(t)) = reserved ∧
∧ status(f irst(route(t))) = f ree

Guarantee status(f irst(route(t))) := occupied

This operation corresponds to a train entering the first block of a route. The first block must be
unoccupied before the operation and it is occupied afterwards. It can be accessed only by trains that
have already reserved a route.

Operation MovingOnRoute (t : T, b : B)

Rely availability(route(t)) = reserved ∧
∧ b ∈ blocks(route(t)) ∧
∧ status(next(b)) = f ree

Guarantee status(b) := f ree

status(next(b)) := occupied

This operation corresponds to the occupancy of a block which is different from the first block of
a reserved route. It can be accessed only by trains that have already reserved a route. The current block
has to belong to the route and the next one can be occupied only when it is free. The occupation of the
next block implies that the current one becomes free.

Operation ExitRoute (t : T, b : B)

Rely availability(route(t)) = reserved ∧
∧ b ∈ blocks(route(t)) ∧
∧ next(b) = ∅

Guarantee ∀b ∈ blocks(route(t)) status(b) := f ree

This operation corresponds to the train exit out of the route. It can be accessed only by trains that have
already reserved a route and it is responsible to free all the blocks in that route.

LFTS

The previous sections discussed how to derive a specification of a system looking at the physical
world in which it is going to run in. No mention has been made of fault tolerance and abnormal
situations that deviate from the basic specification. The method discussed in Section “Method” define
the three steps one has to follow to specify a system and they do not depend on what you are actually
specifying, or on its fault tolerance requirements. This allows us to introduce more considerations and
to apply the idea to a wider class of systems. Usually in the formal specification of sequential programs
widening the precondition leads to make a more robust system. The same can be done by weakening
rely conditions. For example, if eliminating a precondition the system can still satisfy the requirements,
this means we have a more robust system. Here we promote this approach considering the idea of fault
as interference. Quoting [Collette, Jones, 2000]:

“The essence . . . is to argue that faults can be viewed as interference in the same way
that concurrent processes bring about changes beyond the control of the process whose
specification and design are considered.”

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1647

In this work, we introduce the idea of Layered Fault Tolerant Specification (LFTS) combining
it with the approach quoted above and making use of rely/guarantee thinking. The first step in this
direction is defining a Fault Model, i. e., which kind of abnormal scenarios we are considering. Our
specification then takes into account that the software runs in an environment when specific things can
behave in an unexpected way. There are three main abnormal situations they can incur:

• Deleting state update: “lost messages”;

• Duplicating state update: “duplicated messages”;

• Additional (malicious) state update: “fake messages created”.

The first one means that a message (or the update of a shared variable) has been lost, i. e., its
effect is not taken into account, as if it had never happened. The second one regards a situation in
which a message has been intentionally sent once (or a variable update has been done once) but the
actual result is that it has been sent (or performed) twice because of a faulty interference. The last case
is the malicious one, i. e., it has to be done intentionally (by a human, it cannot happen because of
hardware, middleware or software malfunctioning). In this case a fake message (or update) is created
from scratch containing unwanted information.

In our approach, the model of a fault is represented by an Error Injector (EI). The way in which
we use the word here is different with respect to other literature where Fault Injector or similar are
concepts discussed in [Moradi et al., 2018]. Here, we only mean a model of the erroneous behavior
of the environment. This behavior is limited, depending on the number of abnormal cases we intend
to consider, and the EI always plays its role by respecting the defined R/G rules. The operations rely
on a specific abnormal behavior and guarantee the ability to handle these situations. The extended
R/G rules are as follows:

• The Error Injector (environment) interferes by changing the global state, but respecting his G.
For example, only lost messages can be handled;

• The operation relying on this kind of (restricted) interference is able to handle
exceptional/abnormal (low frequency) situations satisfying a weaker G.

All the possibilities of faults in the system are described in these terms and the specification
is organized according to the LFTS principle of layering the specification, for the sake of clarity, in
(at least) two different levels, the first one is for normal behaviors and others (if more than one)
are for abnormal behaviours. This approach originated from the notion of idealized fault tolerant
component [Anderson, Anderson, Lee, 1981], but the combination of LFTS and R/G reasoning is the
main contribution of this work. From the expressiveness point of view, a monolithic specification can
include all the aspects, both faulty and nonfaulty, of a system in the same way, as it is not necessary to
organize a program in functions, procedures or classes. The matter here is pragmatics: we believe that,
by following the LFTS principles a specification, can become understandable for all the stakeholders
involved.

LFTS for the train system

Here we consider the Train System in a less ideal world than the one analyzed before. In this
world, the EI plays its role, for the sake of simplicity, changing the global state only according to the
“lost messages” condition. The global state of the system needs to be modified for the EI to implement
its changes. Now, in the network, sensors and actuators can actually fail and some state update could be
not performed. Thus, let us modify the availability function in such a way as to include the third

2024, Т. 16, № 7, С. 1637–1650

1648 M. Mazzara

option: R → {available, reserved, maintenance!} (availability). The RouteReserving operation
can be extended as follows:

Operation RouteReserving (t : T, r : R)

Rely availability(r) = available ∧
∧ ∀b ∈ blocks(r) (status(b) = f ree)

Rely ≈ availability(r) = available

Guarantee availability(r) := reserved

∀b ∈ blocks(r) (status(b) := occupied)

route(t) := r

∀p ∈ P (direction(p) := orientation(r)(p))

Guarantee ≈ availability(r) := maintenance!

∀b ∈ blocks(r) (status(b) := occupied)

route(t) := null

This specification includes the case in which, although the requested route is available, not all the
related blocks have been freed (for example, in one block a sensor stopped working). This is a warning
situation and the route needs to be put under observation, the train is assigned to a null route and, for
safety reasons, all the blocks in that route are occupied. An additional layer of R/G is added for this
purpose and it is indicated by the ≈ syntax.

The make-it-robust process

The process of adding further layers to the specification considering situations that are abnormal
(in the sense that they happen less frequently) is called make-it-robust process and it requires further
analysis and formalization. It seems to be beyond the scope of this paper to explain in detail the
formalism behind it since the article represents just an introduction to the method with an explanation
of the need for it and its potential application to dependable systems. Anyway, the idea we are working
on is to modify the global state, passing from what we call the Ideal World (the initial layer) to
what we call the Real World (the further layers will always be an abstraction of Physics), according
to specific formal rules that have to be applied. In this way, we restrict the creative act behind the
addition of new layers, but we make it possible to automatize the consistency check between different
layers. Looking at the Polya’s analysis of ancient Greeks problem solving [Polya, 1971], he divides
mathematical problems into two classes: “problems to prove” and “problems to find”. We have been
inspired by this analysis when working on this process. The idea is simply applied: the creative act of
identifying the next layer is a “problem to find” and it needs human intervention and invention. This
is the hard part of the work. This process is formally guided by a number of rules explaining how the
global state, its mappings, the relative domains and ranges and the R/G conditions have to be modified
to give a significant spectrum of possibilities.

Conclusions

In this article, we have collected reflections and worked toward an improvement of the ideas
presented in [Jones, Hayes, Jackson, 2007]. The main contributions of this paper are:

1. A better understanding of what a method and desiderata analysis are;

2. Formalisation of features described in [Jones, Hayes, Jackson, 2007];

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Deriving specifications of dependable systems 1649

3. EI as a model of faults for capturing fault tolerant behaviors;

4. The organization of specification in terms of layers of R/G conditions (LFTS);

5. The experimentation on a practical case study.

Although the article only makes tentative steps, the hope is that this may revive the discussion
initiated in [Jones, Hayes, Jackson, 2007] and bring a future flow of new literature on this topic. The
recent trends in Software Engineering such as Microservices [Bucchiarone et al., 2020], smart and
software-defined buildings [Mazzara et al., 2019], M2M micropayments [Strugar et al., 2018] and
Devops [Bobrov et al., 2019] are also a relevant field of investigation of what concerns dependability
and rely guarantee thinking. To the best of our knowledge, not much literature has been published in
this area.

References

Abrial J.-R. Modeling in Event-B: system and software engineering. — Cambridge University Press,
2010.

Abrial J.-R. The B-book: assigning programs to meanings. — Cambridge University Press, 1996.
Anderson T., Anderson T., Lee P. A. Fault tolerance, principles and practice. — Prentice/Hall

International, 1981. — https://books.google.ru/books?id=LtdQAAAAMAAJ
Baeten J. C. M. A brief history of process algebra // Theoretical Computer Science. — 2005. — Vol. 335,

No. 2–3. — P. 131–146. — http://dx.doi.org/10.1016/j.tcs.2004.07.036
Bicarregui J. C., Fitzgerald J. S., Lindsay P. A., Moore R., Ritchie B. Proof in VDM: a practitioner’s

guide. — Berlin, Heidelberg: Springer-Verlag, 1994.
Bobrov E., Bucchiarone A., Capozucca A., Guelfi N., Mazzara M., Masyagin S. Teaching DevOps

in academia and industry: reflections and vision // Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment — Second International
Workshop, DEVOPS 2019, Château de Villebrumier, France, May 6–8, 2019, revised selected
papers / Eds.: J.-M. Bruel, M. Mazzara, B. Meyer. — Springer, 2019. — Lecture Notes in Computer
Science. — Vol. 12055. — P. 1–14.

Booch G., Rumbaugh J., Jacobson I. Unified modeling language user guide. — Addison-Wesley
Professional, 2005.

Bruel J.-M., Ebersold S., Galinier F., Mazzara M., Naumchev A., Meyer B. The role of formalism
in system requirements // ACM Comput. Surv. — 2022. — Vol. 54, No. 5. — P. 93:1–93:36. —
https://doi.org/10.1145/3448975

Bucchiarone A., Dragoni N., Dustdar S., Lago P., Mazzara M., Rivera V., Sadovykh A. (eds.)
Microservices, science and engineering. — Springer, 2020.

Collette P., Jones C. B. Enhancing the tractability of rely/guarantee specifications in the development
of interfering operations // Proof, language, and interaction, Essays in Honour of Robin Milner /
G. D. Plotkin, C. Stirling, M. Tofte. — The MIT Press, 2000. — P. 277–308.

DeFleur M., Kearney P., Plax T., DeFleur M. Fundamentals of human communication. — McGraw-Hill
Companies,Incorporated, 2004. — https://books.google.ru/books?id=2EoPAAAACAAJ

Descartes R. Discourse on method. — Harmondsworth, Penguin, 1950.
Jackson M. The problem frames approach to software engineering // 14th Asia-Pacific Software

Engineering Conference (APSEC’07). — 2007. — P. 14. — DOI: 10.1109/ASPEC.2007.11
Jones C. B. Tentative steps toward a development method for interfering programs //

ACM Trans. Program. Lang. Syst. — 1983. — Vol. 5, No. 4. — P. 596–619. —
https://doi.org/10.1145/69575.69577

2024, Т. 16, № 7, С. 1637–1650

1650 M. Mazzara

Jones C. B., Hayes I. J., Jackson M. A. Deriving specifications for systems that are connected to
the physical world // Formal Methods and Hybrid Real-Time Systems, Essays in Honor of
Dines Bjørner and Chaochen Zhou on the Occasion of Their 70th Birthdays, Papers presented
at a Symposium held in Macao, China, September 24–25, 2007 / Eds.: C. B. Jones, Z. Liu,
J. Woodcock. — Springer, 2007. — Lecture Notes in Computer Science. — Vol. 4700. —
P. 364–390. — https://doi.org/10.1007/978-3-540-75221-9_16

Li X., Liu Z., Jifeng H. A formal semantics of UML sequence diagram // Proceedings of the 2004
Australian Software Engineering Conference. — 2004. — P. 168.

Liu S., Liu Y., André É., Choppy C., Sun J., Wadhwa B., Dong J. S. A formal semantics for complete
UML state machines with communications // Proceedings of Integrated Formal Methods, 10th
International Conference, IFM 2013, Turku, Finland, June 10–14, 2013. — Springer, 2013. —
Lecture Notes in Computer Science. — Vol. 7940. — P. 331–346.

Mazzara M., Afanasyev I., Sarangi S. R., Distefano S., Kumar V., Ahmad M. A reference architecture
for smart and software-defined buildings // IEEE International Conference on Smart Computing,
SMARTCOMP 2019, Washington, DC, USA, June 12–15, 2019. — 2019. — P. 167–172.

Meyer B. Touch of class: learning to program well with objects and contracts. — Springer Publishing
Company, Incorporated, 2009.

Moradi M., Van Acker B., Vanherpen K., Denil J. Model-implemented hybrid fault injection for
Simulink (tool demonstrations) // Cyber physical systems. Model-Based Design — 8th International
Workshop, CyPhy 2018, and 14th International Workshop, WESE 2018, Turin, Italy, October 4–5,
2018, revised selected papers / Eds.: R. D. Chamberlain, W. Taha, M. Törngren. — Springer,
2018. — Lecture Notes in Computer Science. — Vol. 11615. — P. 71–90.

Object Management Group Standards Development Organization. Object constraint language. —
[Electronic resource]. — 2014. — https://www.omg.org/spec/OCL/ (accessed: 14.02.2024).

Polya G. How to solve it. — Princeton University Press, 1971. —
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565

Strugar D., Hussain R., Mazzara M., Rivera V., Lee J., Mustafin R. On M2M micropayments:
a case study of electric autonomous vehicles // IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July 30 – August 3, 2018. —
2018. — P. 1697–1700.

Szyperski C. Component software: beyond object-oriented programming. — Addison-Wesley Longman
Publishing Co., Inc., 2002.

Woodcock J. C. P., Davies J. Using Z: specification, refinement, and proof. — Prentice Hall, 1996.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /RUS ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

