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Accurate tree identification is essential for ecological monitoring, biodiversity assessment, and forest
management. Traditional manual survey methods are labor-intensive and ineffective over large areas. Advances
in remote sensing technologies including lidar and hyperspectral imaging improve automated, exact detection in
many fields.

Nevertheless, these technologies typically require extensive labeled data and manual feature engineering,
which restrict scalability. This research proposes a new method of Self-Supervised Learning (SSL) with the
SimCLR framework to enhance the classification of tree species using unlabelled data. SSL model automatically
discovers strong features by merging the spectral data from hyperspectral data with the structural data from
LiDAR, eliminating the need for manual intervention.

We evaluate the performance of the SSL model against traditional classifiers, including Random Forest
(RF), Support Vector Machines (SVM), and Supervised Learning methods, using a dataset from the ECODSE
competition, which comprises both labeled and unlabeled samples of tree species in Florida’s Ordway-Swisher
Biological Station. The SSL method has been demonstrated to be significantly more effective than traditional
methods, with a validation accuracy of 97.5 % compared to 95.56 % for Semi-SSL and 95.03 % for CNN in
Supervised Learning.

Subsampling experiments showed that the SSL technique is still effective with less labeled data, with the
model achieving good accuracy even with only 20 % labeled data points. This conclusion demonstrates SSL’s
practical applications in circumstances with insufficient labeled data, such as large-scale forest monitoring.
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Точное определение деревьев имеет решающее значение для экологического мониторинга, оценки
биоразнообразия и управления лесными ресурсами. Традиционные методы ручного обследования трудо-
емки и неэффективны на больших территориях. Достижения в области дистанционного зондирования,
включая лидар и гиперспектральную съемку, способствуют автоматизированному и точному обнаруже-
нию в различных областях.

Тем не менее, эти технологии обычно требуют больших объемов размеченных данных и ручной
инженерии признаков, что ограничивает их масштабируемость. Данное исследование предлагает новый
метод самообучения (Self-Supervised Learning, SSL) с использованием архитектуры SimCLR для улучше-
ния классификации видов деревьев на основе неразмеченных данных. Модель SSL автоматически обнару-
живает сильные признаки, объединяя спектральные данные гиперспектральной съемки со структурными
данными лидара, исключая необходимость ручного вмешательства.

Мы оцениваем производительность модели SSL по сравнению с традиционными классификаторами,
такими как Random Forest (RF), Support Vector Machines (SVM), а также методами обучения с учителем,
используя набор данных конкурса ECODSE, который включает как размеченные, так и неразмеченные
образцы видов деревьев на биологической станции Ordway-Swisher во Флориде. Метод SSL показал зна-
чительно более высокую эффективность по сравнению с традиционными методами, продемонстрировав
точность 97,5 % по сравнению с 95,56 % для Semi-SSL и 95,03 % для CNN при обучении с учителем.

Эксперименты по выборке показали, что техника SSL остается эффективной при меньшем количе-
стве размеченных данных, и модель достигает хорошей точности даже при наличии всего 20 % разме-
ченных образцов. Этот вывод демонстрирует практическое применение SSL в условиях недостаточного
объема размеченных данных, таких как мониторинг лесов в больших масштабах.

Ключевые слова: самообучение, обнаружение видов деревьев, SimCLR, гиперспектральные
изображения, лидарные данные
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Introduction

Accurate detection of tree species is crucial for a wide range of applications, including forest
inventory, biodiversity monitoring, and carbon storage assessment [Zhong et al., 2022; Xiao et
al., 2019; Gu et al., 2015]. Traditional approaches primarily involve manual surveys and visual
assessments, which are labor-intensive, costly, and impractical for large areas [Zhong et al., 2022;
Alonzo, Bookhagen, Roberts, 2014; Qin et al., 2022]. These limitations have driven research towards
remote sensing technologies, particularly hyperspectral and LiDAR imaging.

Over the past two decades, forest monitoring has increasingly leveraged remote sensing methods,
with hyperspectral and LiDAR technologies showing considerable promise, especially in complex
ecosystems such as boreal and temperate forests [Mäyrä et al., 2021; Feng et al., 2020; Maschler et al.,
2018]. Hyperspectral imaging provides detailed spectral information across hundreds of narrow bands,
spanning both visible and non-visible wavelengths. This allows hyperspectral sensors to capture subtle
biochemical and physiological differences between plant species, such as chlorophyll, water content,
and carotenoid levels, which are often missed by traditional RGB and multispectral images [Mäyrä et
al., 2021]. This high spectral resolution has proven beneficial in distinguishing tree species, especially
in diverse forested environments [Raczko, Zagajewski, 2017; Modzelewska, Fassnacht, Stereńczak,
2020; Wan et al., 2020; Zhao et al., 2021].

While hyperspectral data offers rich spectral detail, it lacks structural context. LiDAR, on the
other hand, provides precise vertical information, allowing for accurate extraction of features such as
tree height and canopy shape [Kim et al., 2009; Man et al., 2020]. When combined, hyperspectral and
LiDAR data have demonstrated enhanced accuracy in tree species classification by integrating spectral
and structural information. However, traditional methods, including Random Forest (RF) and Support
Vector Machines (SVM), rely heavily on manual feature engineering and large labeled datasets, which
can be limiting in terms of scalability [Mäyrä et al., 2021; Kim et al., 2009]. Deep learning models
like Convolutional Neural Networks (CNNs) have alleviated some of these challenges by automating
feature extraction, though they continue to rely on labeled data [Sothe et al., 2020; Fricker et al., 2019].

This study introduces a novel approach leveraging Self-Supervised Learning (SSL) with the
SimCLR framework to classify tree species using unlabelled hyperspectral and LiDAR data. SSL allows
models to learn from unlabeled data through pretext tasks, acquiring features that are transferable to
classification tasks with minimal labeled data [Jaiswal et al., 2020; Wang et al., 2023a; Wang et al.,
2022]. By leveraging SimCLR’s contrastive learning approach, our model can learn robust features
from both spectral and structural data without the need for extensive labeled samples [Chen et al.,
2020]. In this study, we evaluate the performance of SSL relative to traditional machine learning
methods, showing that SSL achieves high accuracy with fewer labeled samples, making it a promising
solution for large-scale forest monitoring.

Related works

Hyperspectral and LiDAR in tree species classification. Hyperspectral imaging and LiDAR
data have become essential tools in vegetation analysis and tree species classification due to their
complementary spectral and structural information. Hyperspectral sensors capture subtle spectral
characteristics associated with different plant species, such as chlorophyll, moisture content, and
carotenoids [Liu, Wu, 2018; Mäyrä et al., 2021]. LiDAR, in contrast, provides structural details such
as canopy height and tree shape, which enhance the spatial context of hyperspectral data. However, the
combined use of these technologies has faced challenges due to the need for extensive labeled data and
manual feature extraction, limiting their application over large areas [Zhong et al., 2022; Kim et al.,
2009].
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Machine learning in remote sensing. Traditional classifiers, including Random Forest (RF)
and Support Vector Machines (SVM), have been widely used in remote sensing for tree species
classification, but they often require significant manual feature engineering [Zhong et al., 2022; Alonzo,
Bookhagen, Roberts, 2014]. The emergence of deep learning models, such as CNNs, has improved
feature extraction by automating the process. CNNs have been successfully applied to hyperspectral
and LiDAR data, reducing the dependency on manual feature engineering. Nevertheless, CNNs require
large labeled datasets for effective training, which remains a barrier in remote sensing applications with
limited labeled samples [Fricker et al., 2019; Sothe et al., 2020].

Self-supervised learning (SSL). Self-Supervised Learning (SSL) offers a promising solution to
the labeled data challenge by allowing models to learn from unlabelled data through pretext tasks, such
as contrastive learning, clustering, and feature prediction [Jaiswal et al., 2020; Wang et al., 2023a].
Although SSL has been successful in fields like medical imaging and general image recognition, it
has not yet been widely explored in remote sensing applications. SimCLR, a popular SSL method, has
shown effectiveness in learning high-quality representations in computer vision tasks by distinguishing
between similar and dissimilar data pairs [Chen et al., 2020]. This approach is particularly suitable
for complex datasets, such as hyperspectral and LiDAR data, where subtle spectral and structural
differences can signify unique tree species. Our study is among the first to apply SSL to tree species
detection in remote sensing, positioning SSL as a valuable approach for data-scarce tasks in ecological
monitoring.

Methodology and study area

Study area

This study used data from the ECODSE group’s 2017 competition [ECODSE group, 2017],
obtained at the Ordway-Swisher Biological Station (OSBS) in Florida, USA. The research region
covers 37 km2 and is dominated by highland forests, including longleaf and loblolly pines with an
average canopy height of 23 meters. NEON provides extensive field and remote sensing data, including
hyperspectral imaging, LiDAR-derived canopy height models, and high-resolution camera images.

Dataset details

NEON provides extensive field and remote sensing data, including hyperspectral imaging,
LiDAR-derived canopy height models, and high-resolution camera images. The hyperspectral data
captures 426 spectral bands with a one-meter spatial precision, while the LiDAR data offers structural
information on the forest’s vertical profile.

The dataset is organized across several files, each contributing different dimensions of
information, these files were merged into a single, integrated dataset containing both spectral
(hyperspectral bands) and structural (LiDAR) features for each crown. This integrated dataset covers
four unique tree species (PIPA, QULA, QUGE, OTHER). Additionally, provide broader taxonomic
information represents by genus and genus-id , These information inclusion of both detailed species-
specific and genus-level information allows the model to learn hierarchical relationships and refine
classification within similar species groups.

Data preprocessing

The dataset consists of two major data types: hyperspectral data and LiDAR data. These datasets
contain both high-dimensional spectral information and structural information, and were preprocessed
as follows.

Data cleaning. Duplicated Recored removed on the integrated dataset to avoid data inconsistency
and overfitted during training.
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Normalization and standardization. The hyperspectral data is composed of hundreds of
spectral bands, each indicating the reflectance of a distinct wavelength. To normalize the hyperspectral
data to a range of [0, 1], MinMaxScaler from sklearn.preprocessing [Scikit-learn Developers, 2024a]
was used. This phase is critical to preventing learning from getting skewed by dominant bands. This
transformation can be described numerically as follows:

x′ =
x − xmin

xmax − xmin

, (1)

where x′ is the normalized value, and xmin and xmax are the minimum and maximum values in the data,
respectively.

Furthermore, the LiDAR features, which comprise metrics such as height, diameter,
crown dimensions, and canopy height model (CHM), were standardised with “StandardScaler”.
Standardization ensures that each feature has a mean of zero and unit variance, making the magnitudes
of these features comparable, which aids the model in learning effectively from structural metrics. These
features were standardized using the StandardScaler [Scikit-learn Developers, 2024b] and formulated
as:

z =
x − μ
σ
, (2)

where z is the standardized value, μ is the mean of the feature, and σ is the standard deviation.
Using various scalers for hyperspectral and LiDAR data is for accommodate the unique

properties of each data source, while MinMaxScaler helps hyperspectral data preserve proportionate
contributions across bands, StandardScaler helps LiDAR data standardize the distribution of structural
measures. This strategy ensures that the model can learn successfully from both types of input, taking
use of their distinct qualities to improve classification performance.

Data splitting and augmentation

To reduce the possibility of bias caused by imbalanced classes, the labeled dataset was partitioned
into training and validation sets, with equal representation of all tree species in both sets. During
training, data augmentation and Gaussian noise techniques were also used on hyperspectral and LiDAR
data. For hyperspectral data, Gaussian noise with a scale of 0.1 was used, whereas for LiDAR features,
noise with a scale of 0.05 was applied.

Hyperspectral data augmentation:

˜Xhyper = Xhyper +N(0, 0.1); (3)

LiDAR data augmentation:

˜Xlidar = Xlidar +N(0, 0.05). (4)

Model architectures

The neural network model employs two branches designed for two different types of input data:
hyperspectral images and LiDAR features. These branches are later fused to form one feature for the
tree species classification.

The Figure 1 illustrates the model architectures where the hyperspectral data branch uses three
1D convolutional layers (“Conv1D”) to effectively capture local spectral dependencies. The use of
1D convolutions is well suited for hyperspectral data since it treats each spectral band as part of
a sequence, learning meaningful spectral features, while the LiDAR data branch consists of fully
connected (“Dense”) layers. This structure is appropriate for learning complex relationships between
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Figure 1. Self-supervised learning architecture for tree species classification

LiDAR features such as tree height, crown diameter, and other structural metrics. The fully connected
layers allow the model to capture non-linear interactions among the LiDAR features.

A combined feature vector was formed by concatenating the outputs from both the hyperspectral
and LiDAR branches. This fusion allows the model to benefit from both spectral information
(hyperspectral data) and structural information (LiDAR data), providing a comprehensive feature set
for tree species detection.

Self-supervised pretext task (SimCLR)

The self-supervised learning approach used in this study is based on the SimCLR (Simple
Framework for Contrastive Learning of Visual Representations) method. The objective of SimCLR
is to train the model without labels by the means of contrastive learning, which forces as strong an
agreement as possible over several representations of the same data point.

SimCLR framework

SimCLR learns representations by comparing several enhanced perspectives of the same input. In
this context, we generate the augmented views for each data point, and apply random transformations
such as Gaussian Noise. This assists the model in learning transformation-invariant features, which
means that the model will learn to recognize an item, in this case a tree species, despite minor changes
in its spectral or structural qualities. The training goal is to maximize the similarity between these
two perspectives in the feature space (similar data points are closer together), while minimise their
similarity to all other data points, resulting in negative pairings. This method, known as contrastive
learning, allows the model to learn strong and generalizable features by differentiating between similar
and dissimilar inputs.

Contrastive loss function (NT-Xent loss)

The model was trained using the NT-Xent (Normalized Temperature-scaled Cross Entropy) loss
function, which uses a cosine similarity measure between feature vectors.

�(i, j) = − log
exp
(

sim(zi, z j)

τ

)

2N
∑

k=1
1[k�i] exp

(

sim(zi, zk)
τ

)

,

where sim(zi, z j) is the cosine similarity between two augmented samples, and τ is a temperature
parameter:

sim(zi, z j) =
zi · z j

‖zi‖ · ‖z j‖
.
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Main task

Following the training with the SimCLR framework, the model underwent fine-tuning with
labeled data for tree species classification. The feature extraction layers learned during the self-
supervised phase were frozen, while new dense layers were added for fine-tuning the model for the
classification task. The added layers consisted of two dense layers of 512 and 256 units, respectively,
followed by dropout layers to prevent overfitting. Dropout layers with a rate of 0.5 were used to ensure
that the model remains generalizable by randomly dropping neurons during training, encouraging the
model to learn robust representations. L2 regularization 0.001 was used in the dense layers to penalize
large weight magnitudes, reducing model complexity and improving generalizability.

The final output layer used a “softmax” activation to classify the input into one of the available
tree species categories.

Output = Softmax(Wz + b), (5)

where W and b are learned parameters, and z is the output of the dense layers before the classification
layer.

The fine-tuned model was optimized using sparse categorical cross-entropy loss:

L = −
N
∑

i=1

yi log( ŷi), (6)

where yi is the true label, and ŷi is the predicted probability.

Training setup

The model was trained for up to 50 epochs with a batch size of 32, allowing early stopping to
intervene if necessary. The Adam optimizer was used with its default learning rate and weight decay
regularization in the dense layers to prevent overfitting.

A local desktop computer with a 12th Gen Intel® Core™ i7-12650H CPU running at 2.30 GHz
was used for training; it lacked a dedicated GPU, therefore all calculations were done using the CPU.
This CPU-only configuration showed that the Self-Supervised Learning (SSL) approach is feasible in
resource-constrained environments, but it also resulted in longer training periods, especially for deep
learning models. Even in the absence of GPU resources, the SSL model’s performance under these
circumstances points to encouraging possibilities for scalability in ecological monitoring applications.

Evaluation

After training, the model was evaluated on the validation set, and a confusion matrix was
generated to analyze the classification performance across different tree species. The confusion
matrix provides insights into specific misclassification patterns, which is particularly valuable when
dealing with species with similar spectral and structural characteristics. Morever, a data subsampling
experiment was performed To assess the model’s robustness.

Models training process

Each model was trained using the following procedures:

• Semi-supervised learning (Semi-SSL): Similar to SSL methods, the Semi-SSL model employed
a pseudo-labeling technique, whereby provisional labels were applied to the unlabeled samples
according to the model’s confidence in its predictions, and these pseudo-labeled samples were
then used in conjunction with the labeled data to train the model. The Semi-SSL model was
trained over 50 epochs with the aim of improving the classification capabilities through iterative
improvement of the model’s decision boundaries, and the model’s performance improved as it
gradually learned from both labeled and pseudo-labeled examples.
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• Supervised learning (CNN): The CNN was trained with solely labeled data under full
supervision. The Adam optimizer was used to minimize the categorical cross-entropy loss
function during the 40 period training process. The optimization process was controlled with
a batch size of 32 and a learning rate of 10−3. The model only learned discriminative features for
classification using the labeled training data; no data augmentation techniques were used during
training.

• Random forest (RF) and support vector machines (SVM): radial basis function (RBF)
kernel, which is especially well-suited for the high-dimensional, non-linear relationships found
in hyperspectral data, the Random Forest (RF) model was set up with 100 trees, each of which
used a random subset of features for decision-making to improve generalizability. assessing these
models according to how well they classify the labeled validation set.

Results

In this section, we present and compare the performance of the models employed in this
study, including Supervised Learning (CNN), Self-Supervised Learning (SSL) using SimCLR, Semi-
Supervised Learning (Semi-SSL), Random Forest (RF), and Support Vector Machines (SVM). We
assess their accuracy, precision, recall, and F1-score on the tree species classification task using
hyperspectral and LiDAR data. We also analyze the learning curves, confusion matrices, and
performance trends during training.

Performance comparison across models

We compared the models based on accuracy, precision, recall, and F1-score on the validation
dataset. The table below summarizes the performance of each model.

Table 1. Performance comparison across models

Model Accuracy % Precision Recall F1-score Epochs
SSL (SimCLR) 97.5 0.96 0.97 0.96 50
Semi-SSL 95.56 0.95 0.96 0.95 50
Supervised Learning (CNN) 95.03 0.95 0.95 0.95 40
Random Forest (RF) 95.0 0.95 0.95 0.94 —
Support Vector Machines (SVM) 68.0 0.47 0.68 0.55 —

From the table, we observe that the SSL (SimCLR) model outperforms other models in terms
of accuracy and F1-score, demonstrating the robustness of Self-Supervised Learning in leveraging
unlabeled data to improve classification performance. The Semi-SSL model follows closely, benefiting
from the use of pseudo-labeled data. The Supervised Learning model (CNN) achieves strong
performance as well, although slightly lower than the SSL and Semi-SSL models. Random Forest
(RF) also shows strong performance with an accuracy of 95 %, while SVM struggles with the high-
dimensional hyperspectral data, resulting in significantly lower accuracy.

Data subsampling experiment

In addition to the main performance metrics, a data subsampling experiment was carried out to
assess the SSL model’s reliability when trained on smaller subsets of labeled data. The findings showed
that the SSL model was able to maintain a high accuracy (87.58 %) with just 10 labeled data, rising
to 92.55 % with 50 % labeled data. These results show how strong SSL is in situations with scarce
labeled data, underscoring its usefulness for extensive ecological monitoring.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ
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Figure 2. Model performance vs percentage of training data used

Figure 2 shows how the validation accuracy of the SSL model changes based on the amount of
labeled training data used. The study shows that the model retains a relatively high level of accuracy,
even when the amount of labeled data is greatly reduced. The decrease at 30 can be attributed to
variations in the composition of training subsets, as smaller subsets may lack diversity or balance in
class representation, Such inconsistencies can lead to temporary declines in model performance, as
observed.

Model performance analysis

This section presents the performance analysis for the SSL, Semi-SSL, Supervised Learning
(CNN), Random Forest (RF), and Support Vector Machines (SVM) models, combining training curves
and confusion matrices for each model.

SSL (SimCLR) model. The SSL model demonstrates consistent improvements in both
training and validation accuracy, with no signs of overfitting. The final validation accuracy reached
97.5 %, showcasing the model’s strong performance. The confusion matrix for SSL reveals minimal
misclassifications, confirming the efficacy of self-supervised learning in capturing intricate spectral and
structural properties.

Figure 3. Training and validation accuracy/loss curves for SSL model

2024, Т. 16, № 7, С. 1747–1763
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Figure 4. Confusion matrix for SSL model

Semi-SSL model. The Semi-SSL model follows a similar accuracy trend but plateaus earlier
compared to SSL, indicating that pseudo-labeled data was beneficial yet not as effective as fully
self-supervised techniques. The final validation accuracy reached 94 %. The confusion matrix for the
Semi-SSL model shows slightly more misclassifications, potentially due to label noise from pseudo-
labeling.

Figure 5. Training and validation accuracy/loss curves for Semi-SSL model

Supervised Learning (CNN) model. The supervised CNN model shows steady improvement in
validation accuracy, reaching 95.03 %. This performance is strong, though slightly lower than that of
the SSL and Semi-SSL models. The confusion matrix indicates that the model struggles with species
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Figure 6. Confusion matrix for Semi-SSL model

Figure 7. Training and validation accuracy/loss curves for Supervised Learning (CNN) model

that share similar spectral and structural traits, suggesting that more sophisticated feature learning
techniques might benefit this model.

Random Forest (RF) model. The RF model performs well, with a high classification ability as
shown in the confusion matrix. However, it exhibits more misclassifications in species that are difficult
to distinguish, likely due to its reliance on manual feature engineering.

Support Vector Machines (SVM) model. The SVM model struggles significantly, with a high
number of misclassifications for species with overlapping spectral and structural properties. This
underscores the limitations of SVM in handling high-dimensional hyperspectral data without advanced
dimensionality reduction.

2024, Т. 16, № 7, С. 1747–1763
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Figure 8. Confusion matrix for Supervised Learning (CNN) model

Figure 9. Confusion matrix for Random Forest model
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Figure 10. Confusion matrix for Support Vector Machines (SVM) model

By presenting each model’s training/validation accuracy and confusion matrix together, this
section offers a clear and cohesive comparison of model performances across various aspects.

Feature representation

The SSL model learns feature representations effectively from both hyperspectral and LiDAR
data, minimizing the need for manual feature engineering. By projecting the learnt embeddings into
lower-dimensional space with SimCLR’s projection head, the model captures complex relationships
between spectral and structural features. To demonstrate these learnt features and evaluate the
representation’s quality, t-Distributed Stochastic Neighbor Embedding (t-SNE) was utilized for its
ability to capture and highlight local structures within high-dimensional data. t-SNE is a nonlinear
approach that excels at preserving local associations between data points. This makes t-SNE very good
at visualizing clusters and spotting small differences in feature space, which is critical for determining
how effectively the SSL model discriminate between different tree species.

The t-SNE graphic shows that the SSL model successfully learned feature representations that
group similar tree species together. There are multiple separate clusters, each of which corresponds to
a different tree species. The separation of these clusters demonstrates that the model can distinguish
between species using the learned properties. There are areas where clusters overlap, showing that some
tree species share spectral and structural traits. This overlap may indicate difficulties in differentiating
certain species or regions where the model has to be refined further to improve its discriminative
strength.

Discussion

In this section, we evaluate the data to explain why the Self-Supervised Learning (SimCLR)
method outperformed other approaches, highlight its practical implications, and indicate prospective
areas for further research.
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Figure 11. Feature embeddings for SSL model

Analysis of results

SSL superiority. The Self-Supervised Learning (SimCLR) model demonstrated superior
performance with a validation accuracy of 97.5 %, surpassing both traditional methods like Random
Forest (RF) and Support Vector Machines (SVM), as well as the Semi-Supervised Learning (Semi-
SSL) approach. The key advantage of SSL lies in its ability to learn from unlabeled data, allowing the
model to extract more robust and generalizable features. Through contrastive learning, the SimCLR
model effectively aligns similar features while distinguishing dissimilar ones, even without labeled
data, which contributes to its enhanced performance in classifying tree species.

Semi-SSL performance. The Semi-Supervised Learning model achieved a strong validation
accuracy of 95.56 %. This approach benefited from the inclusion of pseudo-labeled data, which
enhanced the model’s learning process compared to purely supervised methods. However, it did not
match the performance of the SSL model. This disparity may be attributed to the introduction of
noise through incorrect pseudo-labels, which could have hindered the model’s ability to learn optimal
representations. Despite this, the Semi-SSL approach still demonstrated the effectiveness of utilizing
both labeled and unlabeled data to improve classification accuracy.

Supervised Learning (CNN) performance. The Supervised Learning model, trained purely on
labeled data, achieved a validation accuracy of 95.03 %. While this is a strong performance, it slightly
lags behind the SSL and Semi-SSL models. This result highlights the limitations of relying solely on
labeled data, where the model may miss out on the potential patterns and structures present in the
unlabeled data that SSL and Semi-SSL methods can capture.

Random Forest and SVM. Random Forest (RF) achieved strong performance with a validation
accuracy of 95 %, benefiting from its ability to handle complex tabular data and its ensemble nature,
which reduces variance and improves generalization. However, RF still required manual feature
engineering and did not perform as well as SSL, which can automatically extract useful features from
raw data.

On the other hand, Support Vector Machines (SVM) struggled significantly with the high-
dimensional hyperspectral data, resulting in a poor accuracy of 68 %. This underperformance is likely
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due to SVM’s limitations in processing large feature sets without extensive hyperparameter tuning and
feature selection. The model’s inability to efficiently handle the complexity and volume of hyperspectral
data highlights the challenges faced by traditional machine learning algorithms in high-dimensional
settings.

Conclusion

The study shows how Self-Supervised Learning (SSL) can effectively classify tree species using
unlabeled data, achieving high accuracy even with a limited number of labeled samples. The outcomes
demonstrate SSL’s promise as a scalable method for ecological monitoring, since obtaining labeled
data is costly and time-consuming. The proposed SSL model outperformed supervised deep learning
models like CNNs and traditional machine learning techniques like Random Forest and Support Vector
Machines by extracting strong, transferable features by utilizing the SimCLR framework.

Furthermore, the experiment with data subsampling demonstrates that SSL is still successful
when the quantity of labeled data declines. SSL is a useful technique for applications where labeled
data is limited because of its robustness, which highlights its appropriateness for large-scale monitoring
and assessment activities in forestry, biodiversity, and environmental sciences.

Despite the promising findings, there are limitations, such as The computational complexity of
SSL, particularly with high-dimensional hyperspectral and LiDAR data. Additionally, even though the
SSL model’s selection of data augmentations worked well in this investigation, it might not apply to
other remote sensing scenarios. Advanced augmentation methods and adaptive SSL frameworks that
are suited to particular ecosystem features may be investigated in future research.

In conclusion,this study establishes SSL as a potent method for identifying tree species and more
general ecological monitoring tasks, providing a practical substitute for fully supervised techniques.
Future studies should look into further optimizing SSL for various forest ecosystems, maybe including
domain-specific knowledge to increase its adaptability, as remote sensing data continues to increase in
volume and complexity, and get closer to automated, scalable solutions for sustainable environmental
management by developing SSL in ecological applications.
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Audebert N., Le Saux B., Lefèvre S. Deep learning for classification of hyperspectral data:
A comparative review // IEEE Geoscience and Remote Sensing Magazine. — 2019. — Vol. 7,
No. 2. — P. 159–173.

Ballanti L., Blesius L., Hines E., Kruse B. Tree species classification using hyperspectral imagery:
A comparison of two classifiers // Remote Sensing. — 2016. — Vol. 8, No. 6. — P. 445.

Briechle S., Krzystek P., Vosselman G. Silvi-Net — A dual-CNN approach for combined classification
of tree species and standing dead trees from remote sensing data // International Journal of Applied
Earth Observation and Geoinformation. — 2021. — Vol. 98. — P. 102292.

Cao J., Liu K., Zhuo L., Liu L., Zhu Y., Peng L. Combining UAV-based hyperspectral and LiDAR data
for mangrove species classification using the rotation forest algorithm // International Journal of
Applied Earth Observation and Geoinformation. — 2021. — Vol. 102. — P. 102414.

Chen T., Kornblith S., Norouzi M., Hinton G. A simple framework for contrastive learning of visual
representations // International Conference on Machine Learning. — 2020. — P. 1597–1607.

Dalponte M., Frizzera L., Gianelle D. Individual tree crown delineation and tree species classification
with hyperspectral and LiDAR data // PeerJ. — 2019. — Vol. 6. — P. e6227.

2024, Т. 16, № 7, С. 1747–1763



1762 L. Shaheen, B.Rasheed, M.Mazzara

ECODSE group. ECODSE competition training set. — 2017. — Accessed: 2024-09-02.
Feng B., Zheng C., Zhang W., Wang L., Yue C. Analyzing the role of spatial features when cooperating

hyperspectral and LiDAR data for the tree species classification in a subtropical plantation forest
area // Journal of Applied Remote Sensing. — 2020. — Vol. 14, No. 2. — P. 022213.

Fricker G. A., Ventura J. D., Wolf J. A., North M. P., Davis F. W., Franklin J. A convolutional neural
network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery //
Remote Sensing. — 2019. — Vol. 11, No. 19. — P. 2326.

Gu C., Hoffman M., Toth L. S., Zhang Y. D. Grain size dependent texture evolution in severely rolled
pure copper // Materials Characterization. — 2015. — Vol. 101. — P. 180–188.
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