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High frequency algorithmic trading became is a subclass of trading which is focused on gaining
basis-point like profitability on sub-second time frames. Such trading strategies do not depend on most
of the factors eligible for the longer-term trading and require specific approach. There were many
attempts to utilize machine learning techniques to both high and low frequency trading. However,
it is still having limited application in the real world trading due to high exposure to overfitting,
requirements for rapid adaptation to new market regimes and overall instability of the results. We
conducted a comprehensive research on combination of known quantitative theory and reinforcement
learning methods in order derive more effective and robust approach at construction of automated
trading system in an attempt to create a support for a known algorithmic trading techniques. Using
classical price behavior theories as well as modern application cases in sub-millisecond trading, we
utilized the Reinforcement Learning models in order to improve quality of the algorithms. As a result,
we derived a robust model which utilize Deep Reinforcement learning in order to optimise static market
making trading algorithms’ parameters capable of online learning on live data. More specifically,
we explored the system in the derivatives cryptocurrency market which mostly not dependent on
external factors in short terms. Our research was implemented in high-frequency environment and
the final models showed capability to operate within accepted high-frequency trading time-frames.
We compared various combinations of Deep Reinforcement Learning approaches and the classic
algorithms and evaluated robustness and effectiveness of improvements for each combination.
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Высокочастотная алгоритмическая торговля — это подкласс трейдинга, ориентированный
на получение прибыли на субсекундных временных интервалах. Такие торговые стратегии не
зависят от большинства факторов, подходящих для долгосрочной торговли, и требуют особо-
го подхода. Было много попыток использовать методы машинного обучения как для высоко-,
так и для низкочастотной торговли. Однако они по-прежнему имеют ограниченное применение
на практике из-за высокой подверженности переобучению, требований к быстрой адаптации
к новым режимам рынка и общей нестабильности результатов. Мы провели комплексное иссле-
дование по сочетанию известных количественных теорий и методов обучения с подкреплением,
чтобы вывести более эффективный и надежный подход при построении автоматизированной
торговой системы в попытке создать поддержку для известных алгоритмических торговых тех-
ник. Используя классические теории поведения цен, а также современные примеры применения
в субмиллисекундной торговле, мы применили модели обучения с усилением для улучшения
качества алгоритмов. В результате мы создали надежную модель, использующую глубокое обу-
чение с усилением для оптимизации параметров статических торговых алгоритмов, способных
к онлайн-обучению на живых данных. Более конкретно, мы исследовали систему на срочном
криптовалютном рынке, который в основном не зависит от внешних факторов в краткосроч-
ной перспективе. Наше исследование было реализовано в высокочастотной среде, и итоговые
модели показали способность работать в рамках принятых таймфреймов высокочастотной тор-
говли. Мы сравнили различные комбинации подходов глубинного обучения с подкреплением
и классических алгоритмов и оценили устойчивость и эффективность улучшений для каждой
комбинации.

Ключевые слова: обучение с подкреплением, алгоритмическая торговля, высокочастотная
торговля, маркет-мейкинг
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Nomenclature

AS Avellaneda – Stoikov
BTC Bitcoin
DDQN Double Deep Q-network
DDPG Deep Deterministic Policy Gradient
DPG Deterministic Policy Gradient
DQN Deep Q-network
DRL Deep Reinforcement Learning
ML Machine Learning
ODE Stochastic differential equation
OU Ornstein –Uhlenbeck
PnL Profit and Loss
PPO Proximal Policy Optimisation
RL Reinforcement Learning
TD3 Twin Delayed Deep Deterministic Policy Gradient
USD United States Dollar
USDT Tether United States Dollar

Introduction

A large number of papers devoted to construction and optimisation of trading strategies.
First widely-recognized theories on price trend estimations can be found back in 1900 when Louis
Bachelier [Bachelier, 1900] for the first time described stochastic approach at price prediction.
Since then theory was extensively expanded by works of Paul Levy [Levi, 2017], Alexander
Hinchin [Hinchin, 1936] and Kiyosi Ito [Itô, 1951] and other researchers forming a foundation of
modern modeling of price predictions.

Meanwhile the speed of trading was constantly rising up from manual enter of orders in the
Wall Street Exchange pit to electronic execution with sub-millisecond execution. This trend opened up
whole new markets of high-frequency trading which is nearly independent from long-term tradings.

As the same time, since mid 2000, computing technology has drastically improved pawning
the way for ML techniques which were theorised during 20th century [Cartea, Jaimungal, Penalva,
2015]. Since high-frequency trading requires highly-optimised hardware and software to preserve low
latency order composition, ML was not widely implemented into such strategies. However, with recent
hardware development, high-frequency ML have become a viable option.

In this project we will explore application of Reinforcement Learning techniques in high
frequency algorithmic trading for optimisation of existing market making strategies. We will explore
how traditional trading approaches can be linked with RL terms and how such techniques can help
to converge trading problem. In particular, we will demonstrate application of popular RL algorithms
improving static models’ parameters maximising the overall returns in high-frequency environment.

In Section “Related work” we will explore existing static and RL solutions in financial trading.
In Section “Methodology” we will formulate core concepts of purposed models based on principles and
methods described in the latter section. In the next two sections we will describe our experimentation
set-up as well as discuss results of those. Finally, in the last Section we will summarise our work done
and draw some conclusions.
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Related work

In this section we will explore known approaches to RL in high-frequency trading as well as
those of quantitative algorithms. We will establish current approaches and possible modifications of
those.

Trading exchange

Term “Exchange” refers to a marketplace where commodities, derivatives and other financial
instruments are traded [Cartea, Jaimungal, Penalva, 2015]. With development of new commodities
(such as cryptocurrencies) has widened repertoire of financial instruments (such as perpetual
derivatives), new exchanges and markets has emerged. In addition, with development of trading
infrastructure, a whole new segment was established — high frequency trading with execution speed of
under 500 microseconds.

With development of theory of market prices, various financial instruments came to place.
Among the newest most influential derivatives suggested are perpetual futures first suggested by Robert
Shiller [Shiller, 1993]. As the name suggests, such futures do not have an expiration date, meaning that
those can be held indefinitely without the need to re-roll the contracts. However, the such instrument
did not get too much attention up until 2011 when Alexey Bragin [Forbes Russia, 2014] introduced it
for cryptocurrencies on ICBIT exchange. This allowed to enlarge leverage trading for cryptocurrencies
and attracted new capital to cryptocurrency trading. As of March 2024, average daily volume traded of
spot BTC/USDT (Bitcoin against USD Tether) totaled approx. 2 billion USD against 16 billion USD
of BTC/USDT perpetual futures.

Since our research will be focused on technical analysis aspects, we will conduct our research
within short-term frequencies on cryptocurrencies, minimising relation of sentiment or other non-
technical factors. More specifically, we will focus on perpetual futures market since the market is more
fluid and thus more suitable for known statistical methods. Finally, we will be using data from Binance
exchange since it is rated as the largest cryptocurrency exchange as of March 2024 [CoinMarketCap].

High frequency algorithmic trading

There are two most popular high-frequency strategy classes: market making and statistical
arbitrage.

Market making strategy suggests calculation of optimal ask and bid quotes around current
mid point aiming to execute both, receiving profit in amount of spread between quoted prices (with
consideration of commission). Large exchanges offer negative commissions to or hire market-making
traders in order to stimulate them to improve liquidity. However, without simulations, it proved to be
challenging to fit profitable statistical market making model. Many market making strategies involve
statistical arbitrage techniques which employ mean reversion models calculated basing on synthetic
features [Lo, 2010].

Latency/triangle arbitrage strategy relies on price latency among different securities and
exchanges. Upon conversion of those securities from to another and converting it back to the domain
asset, there can be guaranteed profit caused by price latency. Advanced algorithms on statistical
arbitrage can use more than dozens of conversions. Naturally, high execution speed is the key for
this strategy since a window for execution is slim [Wah, Wellman, 2013].

There are other mainstream strategies such as quote stuffing or spoofing [Lee, Eom, Park,
2013]. However, those strategies largely imply manipulation of posted orders which are not meant
to execute. Thus, modern exchanges often take measures against traders who utilise such strategies
since it increases pressure in exchange’s infrastructure and risk management with little real trades
outcome.
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Since research of ML methods in statistical arbitrage would require very delicate simulation of
various exchanges and price trends as well as signal latency among them, we will primarily focus on
market making strategies class during our work.

Quantitative algorithms

Most of the quantitative algorithms rely on description of the price process. One of the most
popular processes used in description of price trends is the OU process [Uhlenbeck, Ornstein, 1930].
This model and it’s variations were thoroughly investigated and promoted by many authors [Butler,
King, 2004; Hansen, Pienaar, Orzack, 2008; Beaulieu et al., 2012] both from financial and natural field.
The process has the following form:

X(t) = μ + e−at

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
X(0) − μ + σ

t∫

0

eas dB(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where X(t) resembles price at time t, μ is a constant and mean at stationary, B(s) is Brownian motion
at time and α is described as strength of a resisting force to stabilizing sections. According to known

properties of OU, it has a Gaussian distribution of N
(

μ + e−αt, σ2

2α(1−e2αt)

)

. Note that with t → ∞,

exponential terms converge to zero. In addition, it is the only process that satisfy the three properties —
Markov, Gaussian and stationary. For one-dimensional OU process, the SDE defined as follows:

dX(t) = α(Xt − μ)dt + σ dWt. (2)

Such model offer us a stationary process estimation considering there is no distinctive trend in
place. This leads us to a non-stationary form of OU model:

dX(t) = (β + α(βt + γ − Xt)) dt + σdWt, (3)

where βt + γ referred to as “short-term deterministic fair price” [Merjin, Averbuch, 2024]. Notably,
such process known to have close to zero values of α after calibration process which leads to rejection
of hypothesis of underlying fair price.

There are a lot of OU modifications and approaches to calibrate the parameters of the model.
For instance, there is skew OU process [Wang, Song, Wang, 2015] which adds the Lt(0) symmetric
local time of X to the classic OU SDE formulated at equation (2). A robust approach to evaluate the
parameters were introduced by Rieder [Rieder, 2012] and consist of evaluation of the three parameters:

μ = X, α = − ln(ρ)
d

, σ2 = 2αs2, (4)

where ρ is the auto-correlation at lag 1 and s2 is the variance. More recent approach suggest to
improve the calculation by introduction of Monte Carlo method and root finding algorithm for
better approximation of auto-correlation estimator [Kramer, 2022]. Another recent approach suggest
considering α as a separate OU process [Merjin, Averbuch, 2024]. Another important modification of
OU process is the OU process with jumps [Priola, Zabczyk, 2009]. The related research indicate that
occasional jumps in pricing process may affect the classic OU parameters.

Another approach of price quotation was introduced by Avellaneda and Stoikov [Avellaneda,
Stoikov, 2008]. In their research, they presented a model of quotes taking into consideration current
inventory and probability of new trades arrival. Specifically, paper outlines the reservation price r(s, t):

r(s, t) = s − qγσ2(T − t), (5)
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which account the current midprice s for the stock q currently held by the agent at time t using a
constant γ. Around that price there is a proposed spread of ask and bid quotes:

δ = γσ2(T − t) +
2
γ

ln
(

1 +
γ

k

)

, (6)

where k is a constant. The approach suggest quoting the prices considering risk of having an inventory
and measured distribution of pricing shift. An approach of similar direction was taken by Guilbaud and
Pham [Guilbaud, Pham, 2013]. That work have introduced regime switching control utility as well as
doubly stochastic Poisson process for determination of ask/bid shift expectations.

Another algorithm suggests usage of volume imbalance among first levels or order book [Amir,
Masoud, 2020]. It was showed in experiments that imbalance of volume in the first levels of order book
leads to short-term indication of a price shift. Traditional order book imbalance can be formulated as
follows [Cartea, Donnelly, Jaimungal, 2018]:

imb =
Vb

l − Va
l

Vb
l + Va

l

, (7)

where V is a cumulative volume up to level l for ask (a) or bid (b) side.
A combination of “grid” strategy and ML technique was purposed for fiat market [Rundo et

al., 2019]. The method included a “Regression Network” for calculation of closing price for a certain
short-term period. Then a Trend Classification block classifies a trend as “Long”, “Short” or “Null”
using approximation of first and second derivative of newly obtain price trends. Using that trend
classification, following blocks apply basic risk management constrains and output quotes in case of
non-“Null” trend.

Reinforcement learning approaches

Reinforcement learning is a subcategory of Machine learning which primarily distinct by the
trial-and-error approach to learning rather than classic supervising learning. On each iteration an RL
model receives a state from an environment, sends a designated action to an environment and collect
a feedback in form of reward and new state. Aim of RL algorithm is to formulate optimal policy which
maximizes expected future reward.

In order to solve above mentioned task, RL approach suggests modeling of a Markov decision
processes (MDPs) which consists of a set of states, a set of actions, a reward function and state
transition functions [Kaelbling, Littman, Moore, 1996]. By evaluation of various pairs of states and
actions, we may formulate a value function as below:

V∗(s) = max
a

(
R(s, a) + γ

∑
T (s, a, s′)V∗(s′)

)
, (8)

where R(s, a) is a reward function, T (s, a, s′) is a transition among states s and s′ with action a. That
leads us to the optimal policy:

π∗(s) = arg max
a

(
R(s, a) + γ

∑
T (s, a, s′)V∗(s′)

)
. (9)

One way, to find an optimal policy is to utilize sample backup by continuous update of value for
a certain state-action pair:

Q(s, a) = Q(s, a) + α
(

R(s, a) + γmax
a′

Q(s′, a′) − Q(s, a)
)

, (10)

where Q(s, a) is usually refereed to as the Q-value for some state-action pair [Singh, 1993].
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Naturally, in a real-world scenario, transition matrix is inconceivable to record and maintain. In
order to overcome this limitation, it was purposed to combine neural network approach with concepts
of RL. DRL [Mnih et al., 2015] approach suggest to replace Q-value calculations by a neural network.
Having target Q-value given by Eq. (10) and current Q-value given by a neural network, we may
calculate an error and optimize our Deep Q-Network.

As discussed earlier, aim of RL methods is to derive optimal agent policy utilising accurate
estimator of Q-value dependent on state-action pair. One the most obvious (from ML perspective) ways
to achieve that is Deep Q-network [Mnih et al., 2015] idea of which we described earlier. However, it
was quickly noted that stability of the model can be improved by adding target neural net composing
the DDQN [Van Hasselt, Guez, Silver, 2016]. By adding a delayed-updated target network for Q-value
calculations, Hasselt, et. al were able to counter overestimation encountered in DQN network. More
recent modification of DDQN was achieved by Li et al. [Li et al., 2022] who introduced a Weighted
DDQN. This approach suggests more gradual update of target network by applying weight coefficient:

θtar′ = β · θtar + (1 − β)θpred, (11)

where weights of a target network θtar get updated by prediction network θpred using a constant β.
According to the results, such approach helped to fine-tune trade-off between overestimation and
underestimation. Since the model relies on evaluation of action-state pair, DQN and DDQN are only
able to work in discrete action space.

In order to enlarge possibilities of deep RL methods and transfer action space into continuous
space, an actor-critique approach was developed [Sutton, Barto, 2018] which quickly evolved into
DPG algorithm [Silver et al., 2014]. The approach suggest to learn a value function (aka “Critic”) and
policy (aka “Actor”). Actor maps incoming state into an action and critic responsible for evaluation
of the actions taken by an actor. By extending DPG with the DDQN and other ideas, we received
DDPG [Casas, 2017] and multiple modifications of that [Zhang et al., 2021; Wu et al., 2020; Dong,
Yu, Ge, 2020]. DDPG combines previously discussed features like target networks for actor and critic.
The next improvement came with additional pair critic-target critic with a TD3 [Fujimoto, van Hoof,
Meger, 2018] model. The model has two sets of critic models (both have a target counterpart) both
of which take part in temporal difference calculation. Minimum difference of those is taken for new
Q-value calculation. Additionally, gradient clipping and models weights regularisation was added as
means of overestimation/underestimation control.

More recent popular algorithm is a PPO [Schulman et al., 2017] which takes advantages of
the Trust Region Policy Optimization algorithm [Schulman et al., 2015]. The algorithm considers
abstraction of policy network and value network. A policy network represents a stochastic policy
which updates using entropy error of a new policy compared to older version. Value network evaluates
“advantage” of current state and optimises by an error compared to sum of discounted rewards. By
using combination of an error and clipping of the old/new policy coefficients, policy network gradients
are calculating with respect to the value network. This model can be implemented in actor-critic style
with treatment of soft-maxed policy network outputs as action probability. However, this leads to
limitations of action space to a discrete space. Another approach suggest treatment of policy network’s
outputs and parameters of a distribution (usually, a of a normal distribution). This approach allows to
persist continuous action space.

Reinforcement learning in high-frequency trading

Application of RL in finance have recently drawn a lot of attention having sharp increase
in publications during 2021–2024. After demonstration of RL capabilities in robotics and games,
it seems natural to try and apply the same techniques on financial trading. However, In the early
works on RL in finance a number of disadvantages were noted. Specifically, experiments showed that
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majority of popular RL methods yield extremely unstable results easily jeopardised by random factors
tweaking [Henderson et al., 2018]. Another article suggests that application of RL algorithms face large
challenge of reproducibility issue as well as the fact that researchers usually construct over-simplified
baselines [Chaouki et al., 2020].

First, we will discuss a problem statement as per the related work. One problem statement
was formulated as a management of a portfolio vector at start of a day [Conegundes, Pereira, 2020]
meaning that action space represents a portfolio configuration. Similar work proposes to allocate an
asset in accordance with Markowitz allocation which considered portfolio risk [Chaouki et al., 2020].
Another approach suggest to simply take a decision at any time point on which assets should be
acquired or sold based on observable state which includes current balance, portfolio, etc. [Singh et
al., 2022]. There was an attempt to utilize PPO algorithm for optimization of Avellaneda – Stoikov
market-making algorithm [Falces Marin, Dı́az Pardo de Vera, Lopez Gonzalo, 2022]. Another attempt
at improving an existing model was purposed by Yitao Qiu et al. [Qiu, Liu, Lee, 2024]: utilizing DDPG
algorithm, authors purposed derivation of Quantum pricing levels in accordance to Quantum Finance
Theory. In addition, the PG algorithm was added acting as risk-control agent which select quantum
price support or resistance level. In majority of work analyzed, reward was calculated using PnL or
similar metric (e. g. Sharpe1 or Sortino2). Another approach was presented by Lussange et al. [Lussange
et al., 2021] considering simulation of a exchange by synthetic reinforcement learning agents. Overall
we may observe that majority of researchers treat problem of optimal financial trading as a typical
RL problem having simulation of an exchange as environment and bid/ask quotes (or a set if binary
signals) as an actions.

Now, we will summarize on what methods and additional data were used for trading systems.
Many researchers were utilizing DDPG algorithm to solve the problem [Chaouki et al., 2020; Wu et al.,
2019; Conegundes, Pereira, 2020]. According to the results, this approach profitable results up to 120 %
per year. However, results proved to by highly volatile having notable gaps of drawdowns in contrast
to established baselines which experienced lower volatility in PnL dynamics. Another popular model in
place are DDQN and DQN models. Main distinction of this approach is a limitation of discrete action
space. To counter that, some researchers [Carbonneau, 2021; Liu et al., 2023a] converted quotes into
discrete spaces from a midprice value. Another researchers [Carta et al., 2021] considered a three-value
action space representing commands “Long”, “Short” and “Hold”. Comparing to the other methods,
DQN achieves lower metrics than other model counterparts (however, it is important to note that every
experiment was conducted under various conditions and data thus streamline comparison is a subject
to a bias). Finally, some researchers attempted more sophisticated methods like TD3 [Kabbani, Duman,
2022] and PPO [Liu et al., 2023b]. The experiments yielded highly profitable results utilizing solely
candle stick data(data containing open, close, maximum and minimum price across fixed interval). For
experiments on stock data [Kabbani, Duman, 2022] a aggregated sentiment analysis was successfully
implemented. Another notable result was achieved by Yuling Huang et al. [Huang et al., 2024]
introducing dual DQN each using different input data: TimesNet (a recent approach to transform
a time-series from 1D into 2D space) and Multi-Scale Convolution Network transformation of finance
data.

Methodology

In later sections we noted few known approaches to Reinforcement learning in algorithmic
trading. We may observe that very little of the work reviewed was focused on high-frequency data.
Most of the results were conducted on daily market ticks and were not considering cryptocurrencies as

1 Ratio of risk-free return (a return minus risk-free return ratio. Risk free ration can be a return of government bonds) to
standard deviation of that.

2 Similar metric as Sharpe but instead of risk-free ratio, a “required” ratio is applied and downside standart deviation is used.
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the base asset. In our experiments we will aim to extend the results of related work on high-frequency
cryptocurrency market and on additional set of underlying market-making models.

Our approach will attempt to combine known static algorithms with RL optimisation of
parameters. In addition, we aim at models which can perform in high-frequency environment.

We consider the following role of RL model as parameter optimiser: the static model tends
to transform certain indicators into quote decisions. For instance, the OU models tends to analyse
auto-correlation among the data as well as variance for a period of time. Thus, another indicators are
inaccessible to static methods by design. On contrary, RL models are able to interpret any amount of
additional data. Thus, an RL model will be adjusting certain parameters of a static model and this way
will add analysed indicators to the static model’s decision process.

Environment composition

As stated earlier, we will be using high-frequency data from Binance exchange. Specifically, we
will be using BTC/USDT order book snapshots taken every 200 milliseconds. In total we gathered data
for the period of 01 April – 30 April with total of 12.9 mln. rows. We will devote data for the period
of 01–15 of April for training set and 16–30 of April for test set.

As suggest related research on RL models on order book snapshots [Falces Marin, Dı́az Pardo
de Vera, Lopez Gonzalo, 2022], information about prices and volume of deep level do not yield any
useful information for an RL agent. Thus, for our state space, we restricted number of levels to three
as those noted to have most usable information about current volume state. Having a set of current
prices and volumes represent a state at a particular point in time. However, as previously stated, future
price trends heavily depend on underlying price dynamics. By design, deep RL models achieve this by
having constant optimisation using replay memory routines [Silver et al., 2014]. But in order to help
our system to track time-series aspect of data, we will be adding technical indicators which represent
summary on previous window of ticks.

Each N ticks our model will receive a state and send actions which will be converted to
a simulated order. Depending on price dynamics, order may increase or decrease available quantity
or simply expire without having an effect. At all times we will be tracking realised PnL, meaning that
current inventory will be always converted at current midprice. Model will have information regarding
current volume and balance.

We consider possibility of an online learning, each N forward passes we will be optimising the
model completing the episode. Thus, parameter optimisation will persist both on training and evaluation
runs. Overall high level composition of our model will have the following layout shown in Fig. 1, where
the Static Algorithm block can be simply converter from discrete or continuous actions to quotes for
orders.

Analysis of volume trend

Earlier we considered a volume imbalance indicator which suggested to be of short-term
influence on the future price trends. We believe that this idea can be extended to trend of volume
of the first levels of an order book. Even if the price itself is static, changes in volume should be
preceded before a price shift. Basing on that, we formulate a following proposition.

Let us have a sequence of sum values of the first N ask or bid levels of an order book across
some window of w equally separated ticks. Than we propose to fit a set of coefficients b and ψ such
that equation:

ypred = Aψ + b, (12)

where ypred is a linear regression predictions with A trend sequence [1, 2, . . . , w]. This will give us
a least-squares solution for first N levels of an order book ticks volume for our fixed window w. The
coefficient ψ in this equation takes a role of current volume change trend for ask or bid side. We
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Figure 1. Overview of combined RL and Static model for trading

propose that if coefficients ψ are of different signs for ask and bid size and an absolute value of ψ of
both sides is larger than a certain threshold, an indication of a short term trend occurs. Specifically,

α =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if − ψask < −ω and ψbid > thr,

− 1, if ψask > ω and − ψbid < −thr,

0, otherwise,

(13)

where α is a three-value operator which classifies a trend as [1, −1, 0] for positive, negative and null
trend respectively and ω is a hyper-parameter.

In order to check the hypothesis, we composed a following experimental set-up. We composed
200 ms spaced order book snapshot of BTC/USDT pair from Binance exchange. We established
window size w equals to 5 ticks and depth level N equals to three and thr equals to 2.0. We expect

that our classifier will have the same sign as mat+w
t −mpt

mpt where mat2
t1 is a moving average for a window

of t1 . . . t2 and mpt is a mid-price at tick t. As a result, we analysed 360 thousand such windows
across which 985 times was registered a non-null trend and accuracy in those cases totaled 55.74 %.
Since expected percentage according to the stationary OU model is 50 %, we consider such result to
be significant.

Thus, as a result, we have considered usage of this indicator as a part of our features set for RL
model.

Static algorithms

For purposes to evaluate ability of RL methods to influence decision-making of static algorithms,
we selected several known methods. First, we chose one of the oldest and classic market making
algorithms — Non stationary OU — based mean reverting algorithm. As stated at Eq. (3), there are
four parameters required for evaluation: β — trend, γ — long-term portfolio value, α — mean-reversion
strength and σ — volatility. We note that according to our experiments, on short-term windows, β most
of the times indistinct from zero and thus do not influence decision process. Thus, de-facto we were
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using stationary OU process as denoted at Eq. (2). As for trading strategy itself, we will be utilising
known distribution of OU process as denoted above. Thus, the quoting price will be as follows:

q =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
s, γ + Koutζ

)
, if s − γ > Kinζ,

(
γ − Koutζ, s

)
, if s − γ < −Kinζ,

(∞, −∞), otherwise,

(14)

where q is a two-length tuple of ask and bid quotes, Kin and Kout are constants, s resembles a midprice
and ζ = σ√

2α
is a standard deviation in accordance with the OU model. Note that with q → ∞ for ask

quote or q→ −∞ for bid quote will almost never match with other orders placed on exchange.
Another model we will be trying to optimise is the AS [Avellaneda, Stoikov, 2008] model. As

discussed earlier, we will keep track of the reservation price r(s, t) and optimal spread δ. A new order
will be issued based with the following probability:

p
(
δs) = Ae−kδs

, (15)

where A is a constant relevant to trading frequency of a specific asset, k is a constant and δs is an
absolute difference between a quoting price (see Eqs. (5) and (6)) and current midprice. Our RL model
will be trying to optimise the k, A and γ parameters in Eq. (5).

Finally, we will be optimising the “grid” strategy defined in the previous sections. As we noted,
this model have a “Regression Network” which is responsible for close price prediction. We will be
trying to utilize an RL model in order to predict deviation of a future close price from current midprice.
Next, we will be approximating first and second derivatives of a price trend as follows:

η1 =
∂s(t + 1)

∂t
= spred(t + 1) − s(t), (16)

η2 =
∂s(t + 1)2

∂t
= spred(t + 1) + s(t − 1) − 2s(1), (17)

where s(t) is closing midprice at time tick t and spred(t) is a predicted price at time t. On each time tick
we will classify a trend in accordance with the following equation:

α =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if η1 > δ and η2 > 0,

− 1, if η1 < −δ and η2 < 0,

0, otherwise,

(18)

where δ is a constant. After a trend is defined, we will issue quotes which aiming at a fixed profit y
which is also a constant. With our RL model we will also be optimising the δ and y hyper-parameters.

Technical indicators

In order to improve horizon of available data to RL model, we will tune our observable state
space. In our model we will be considering the following features:

• [bid-ask]_px_X — price of a X level of ask and bid side,

• [bid-ask]_qt_X — volume of a X level of ask and bid side,

• midprice — average of ask_px_1 and bid_px_1,

• VWAP_X — Volume Weighted Average Price for X levels [Amir, Masoud, 2020],
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• mean_W — mean midprice for the last window of length W ,

• vol_W — standard deviation for the last window of length W ,

• sigma_W — volatility in accordance with Eq. (4),

• α_W — mean reversion strength in accordance with Eq. 4,

• imbalance_X — imbalance of the first X levels in accordance with Eq. (7),

• microprice — the order book microprice [Cartea, Jaimungal, Penalva, 2015] in accordance with
Eq. (19)

microprice =
ask_qt_1 · ask_px_1 + bid_qt_1 · bid_px_1

ask_qt_1 · bid_qt_1 , (19)

• open_W’, max_W’, min_W’ — candle stick data for a window W ′ < W ,

• jumps_W” — number of “jumps” [Lee, Mykland, 2007] occurred within a previous window W ′′
detected as follows:

J =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if
log(mpi) − log(mpi−1)

φ
> η,

0, otherwise,
(20)

where η is a constant which purposed to be as η = 4.60001 and φ is a variance of midprice in
log-space,

• qt_trend_[ask-bid]_W’ — volume trend as defined in Eq. (13) across window W ′ for ask and
bid.

According to our experiments, an optimal values of X, W , W ′ and W ′′ are 3, 8192 (approx.
15 minutes), 1500 (5 minutes) and 5, respectively.

Reward considerations

As can be deduced from the Eq. (10) an RL model requires properly established reward. Since
a purpose of any trading system is to generate profit, PnL is essential for reward computation.

Another important feature of any trading system is risk management which primarily linked
to amount of stock at a point in time as implemented in AS and Grid models. We may leave this
consideration to the model itself and make it optimise it’s weights to account current position. However,
it could be more efficient to include this information into reward function in order to regulate applicable
risk level by the end user.

Finally, during experiments, we noted that RL models tends to enter to a “caution mode” when
actions euclidean norm becomes high and thus not trades can be made. We account this phenomena
by experience highly negative return streak by the model which makes it hold the quotes to prevent
negative rewards. In order to counter this, we included Euclidean norm of outputted actions into reward
calculations.

With that in mind, we derived the following reward function:

R(s, a) = rp − c1q − c2‖a‖, (21)

where rp is a yielded return, q(s) is current stock, c1, c2 are constants. Manipulation of c1 and c2 allows
to regulate risk appetite of a model.
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Experiments and evaluation

The mission of the following experiments is to determine whether RL optimization of static
trading algorithms can be effective. In order to complete it, we will deploy static algorithms with RL
support. As a baseline we utilized the underlying static algorithms with calibrated parameters without
any RL optimisation. Note that we did not launched grid algorithm since it requires an ML-based
close price predictor. Parameters for static algorithms were calibrated using a grid search approach on
evaluation dataset. And finally, we will also look into direct RL market making algorithms, e. i. RL
agents actions of which represent ask/bid quotes (note, that negative or extremely positive values of
quotes will not yield in complete orders). Thus we will the three classes of algorithms.

We will employ three RL algorithms in this experiment — DDQN, DDPG and TD3. Each
algorithm had 2000 episodes with 100 steps each for train algorithm and a single pass through test
dataset with optimisations on each 100 steps. Full parameters of RL and static models are presented in
Table 1.

Table 1. Model’s parameters

Params DDQN DDPG TD3 PPO
Q-network layers 1024 | 256 | 128 NA NA NA

Actor / Policy layers NA 256 | 16 256 | 16 512 | 64
Critic / Value layers NA 512 | 128 | 16 512 | 16 512 | 128 | 16

γ 0.8 0.9 0.9 0.99
c1 0.7 0.6 0.6 0.6
c2 0.2 0.2 0.3 0.3
lr 1e − 6 1e − 7 1e − 7 1e − 8
lry 0.99 0.993 0.993 0.995

θclip 1e − 7 1e − 8 1e − 8 1e − 8
β 0.7 0.7 0.7 NA

πclip NA NA NA 0.01

Lent NA NA NA 0.7

Lval NA NA NA 0.8

OUKin 3.0 3.0 3.0 3.0

OUKout 1.5 1.5 1.5 1.5
AS α 1.2 1.2 1.2 1.2

AS k 1.2 1.2 1.2 1.2
AS γ 0.7 0.7 0.7 0.7

GRδ 3e − 4 3e − 4 3e − 4 3e − 4

GRpnl 5e − 4 5e − 4 5e − 4 5e − 4

Results on RL market making algorithms

We run the three RL algorithms which directly outputted quotes for order composition. For
discrete DDQN algorithms action space was presented as number of basis points from current mid-
price. Having a set of allowable distances — [5, 30, 200] we composed all possible pairs (ask and bid
quotes) totalling 9 possible actions. To that we have added another neutral action. As for continuous
action spaces, those will be directly translated to relative step from a midprice. Evaluation of those
models yielded PnL as presented on Fig. 2.

As a result, the DDQN, DDPG, TD3 and PPO models achieved Sharpe coefficients of 2.8, 3.1,
2.4 and 0.2, respectively. So, despite the fact that DDQN achieved considerably higher PnL than the
other models, standard deviation of PnL indicates high volatility of the model output. Thus, the most
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Figure 2. PnL overview of combined RL and Static model for trading. Each line corresponds with a RL model
employed as noted on the figure. All models with exception of PPO ended up with distinctively positive PnL on
BTCUSDT perpetual futures for the period of April 2024

stable and profitable solution in this case can be considered DDPG which achieved the highest Sharpe
ratio.

We note that behaviour of agents proved to be to some degree unstable having the following loss
dynamics (see Fig. 3).

Figure 3. Loss dynamics of the direct DDPG model. Transparent blue line corresponds to factual loss trends.
Blue line depicts smoothed loss for the total training period

The graph demonstrates sudden explosion of the critic loss across optimisations on evaluation
data. That indicates that any market changes may have significant effect on RL model decision making.

Results on RL optimisation of OU model

In order to optimise the OU model proposed in “Static algorithms”, we defined actions of RL
models as coefficients to the OU parameters, namely Kin, Kout and α as defined in Eqs. (2) and (14).
Resulted PnL dynamics demonstrated on Fig. 4.

We may note that all models ended up with zero or negative PnL. Negative PnL of original
OU model could be expected since modern methods utilize more sophisticated tools [Qu, Dassios,
Zhao, 2021; Wang, Song, Wang, 2015]. In this case low profitability primarily linked to weak α values
observed during the evaluation period. However, the RL models seems to detect low profitability of
the model and corrected coefficients in such a way that make orders do not get filled. As a result, all
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Figure 4. PnL dynamic of OU models. Each line corresponds with a RL model employed as noted on the figure.
All models with exception of DDPG, TD3 and PPO ended up with distinctively negative PnL on BTCUSDT
perpetual futures for the period of April 2024

models managed to improve results — DDPG, TD3 and PPO managed to escape fulfillment of orders
and DDQN managed to minimize losses.

Results on RL optimisation of AS model

In order to optimise AS model, we configured RL models to optimise the k, A and γ parameters
in Eq. (5). The resulted outcome of experiments presented on Fig. 5

Figure 5. PnL dynamic of AS models. Each line corresponds with a RL model employed as noted on the figure.
All models with exception of DDQN ended up with distinctively positive PnL on BTCUSDT perpetual futures
for the period of April 2024

Experiments demonstrated promising results with DDQN, DDPG, TD3 and PPO having −0.5,
4.24, 3.5 and 2.9 Sharpe coefficients respectively. The original AS model ended up with 1.9 Sharpe
coefficient.

Thus, every model with exception of DDQN was able to improve performance of raw AS
model. However, similar to the direct approach, models experience significant jumps in loss acquired.
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In addition, all models with exception of PPO has demonstrated significant drawdowns, representing
higher risk strategy.

Results on RL optimisation of Grid model

We composed experiments on optimisation of the Grid model. As we stated earlier, our RL
models were aiming at optimising the close price as well as target profitability and tolerance coefficient.
The results of the experiments presented on Fig. 6. Note that we did not compose any baseline model
since by design, the Grid model should have a Regression block which include a machine learning
algorithm. Since that part is effectively is completed by an RL neural nets, baseline model will be
similar to the ones used in experiments.

Figure 6. PnL dynamic of Grid models. Each line corresponds with a RL model employed as noted on the figure.
All models with exception of DDPG and PPO ended up with distinctively positive PnL on BTCUSDT perpetual
futures for the period of April 2024

As showed on the graph, DDQN and TD3 demonstrated the most promising results meanwhile
PPO and DDPG ended up with zero PnL. Although PnL figures ended up less than in AS or direct
approach, DDQN and TD3 have little drawdown and demonstrate comparatively stable results. We
may also note that DDPG model ended up with no-action strategy meanwhile TD3, an algorithm with
similar architecture ended up with profitable run. This indicates that under other random variables,
DDPG could achieve similar results as TD3 and vice versa. Thus, here we might observe a phenomena
of obstructed reproducibility as noted by some authors [Chaouki et al., 2020; Henderson et al., 2018].

Analysis and observations

We have evaluated 12 RL algorithms and two RL-free baselines. Summary of the results are
outlined in the Table 2.

Table 2. Summary on PnL/Sharpe of experiments

Model OU AS Grid Direct
DDQN −.09/ − 1.8 −.01/ − 0.5 .03/1.6 .11/2.8
DDPG .00/0.1 .23/4.2 .00/0.3 .03/3.1
TD3 .00/0.2 .40/3.5 .04/1.8 .03/2.4
PPO .00/0.3 .23/2.9 .00/0.4 .00/0.2

No RL −.11/ − 2.9 .18/1.9 NA NA
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We may observe that Sharpe ratio for AS RL algorithms turned out to be higher the other ones.
However, high profitability of such models is influenced by high profitability of non-modified AS
model. Thus, if a market regime change, we may observe different situation. Similar to OU — as of
selected period there were limited opportunities for the strategy execution since observed α was low.
For a different period or instrument this situation could change.

Overall, our experiments showed that RL steadily improve performance of underlying static
models. In addition, RL models demonstrated capability to act directly as market-making model.

However, a loss dynamic suggest that RL algorithm might have difficulties in adoption of new
market realities. Specifically, as showed on Fig. 3, loss is unstable and thus it may be unreliable on
greater periods of time. This could happen due to stochastic nature of price trends and constant regime
switches on various time frequencies. Such behaviour could be explained by frequent adaptation of an
RL model to new market regimes.

We may also note that TD3 model provides more strong results compared to other models.
However, PPO rends to demonstrate more stable results amid having significantly lower PnL and
Sharpe ratio.

In addition, we evaluated the models on opportunity to into high-frequency environment. We
ran each model for 100 episodes consisting of 100 steps totalling 10 000 steps and 100 optimisation
routines. We utilised a Julia language in order to conduct the experiments. As a result, average time per
tick for DDQN, DDPG, TD3 and PPO with configuration as per Table 1 and hardware configuration
as stated in Table 3 totaled 5.887 ms, 3.582 ms, 2.299 ms and 4.539 ms respectively which is within
allowable time-frame for high-frequency trading [Cartea, Jaimungal, Penalva, 2015]. By using lower
level languages (i. e. C++), time can potentially be significantly improved.

Table 3. Hardware configuration

Parameter Description
Operating system Ubuntu 22.04.4 LTS

Processor 12th Gen Intel(R) Core(TM) i7-12700H, 6 cores 4600 MHz, 8 cores 3500 MHz
Graphics NVIDIA GeForce RTX 4060 8Gb

Julia version Julia 1.10.3

Conclusion

We concluded experiments on application of RL in high frequency trading. We attempted to
improve known static algorithms as well as apply RL models directly using cryptocurrency data from
the Binance exchange.

As a result, we demonstrated that RL methods can be used both for static algorithms performance
as well as direct output of relevant quotes. We also highlighted unstable tendencies in RL approach and
vulnerability to market regimes changes. We also demonstrated that time taken for a model decision
making is within allowable time frames for High-Frequency execution.

As for further work, we would suggest to research stability of RL approach in greater details.
There could be classification of regime changes and consequences of those on RL-supported algorithms.
In addition, various approaches can be experimented with such as ensemble of trading agents with
different static algorithms under the hood. That could partially compensate instability on the models
observed as well as mitigate excessive drawdown risks. In addition, the topic of regime changes and
adaptation evaluation of an RL model to those changes could be a wide topic for further investigation.
By understanding the nature of regime changes as well as ability of an RL approach to adapt to those
could significantly increase robustness if a method. Moreover, further work could be done in terms
of risk management in such models. In our models, maximum positions were bounded by the static
algorithms themselves (i. e., in OU model, the position is clearly bounded by a constant and depended
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on α and σ) and not took consideration for the current balance or price dynamics. Additional model-
neutral risk-management agents could be introduced in order to adjust output positions. Application of
additional instruments into a model such as options could greatly improve performance.
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