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A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning
methodologies and extensive datasets to process, understand, and generate human-like text. These models are
capable of performing various tasks, such as summarization, content creation, translation, and predictive text
generation, making them highly versatile in applications involving natural language understanding. Generative
AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the
capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting
relevant information from system requirement documents and translating them into a structured database schema.
This capability has the potential to streamline the database design phase, saving significant time and effort while
ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology
with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas
based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these
capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-
Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database
schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in
database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide
a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their
workflow and align technical deliverables with business requirements seamlessly.
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Introduction

In the ever-evolving domain of database management, the development of an efficient and
accurate database schema is essential yet often complicated and time-consuming. Traditionally,
converting requirements into a cohesive database schema necessitated considerable expertise and
manual effort. However, the advent of advanced technologies, such as NLP and LLMs, signals
a significant transformation in this process. With the capability of NLP, computers can now comprehend
and analyze requirement specifications articulated in natural language with remarkable accuracy. This
technology enables machines to grasp the subtleties and context of human language, facilitating the
extraction of pertinent information necessary for database design. When coupled with the sophisticated
capabilities of LLMs, these tools can generate robust database schemas, streamlining the process and
mitigating errors.

The integration of NLP and LLMs in the creation of database schemas yields numerous
advantages. It enhances the precision and consistency of database design by minimizing the likelihood
of human error. Automated schema creation ensures adherence to specified criteria, which is particularly
beneficial in complex projects characterized by intricate requirements. Furthermore, it accelerates
the design process by automating the transformation of requirements into functional schemas. This
efficiency allows developers to concentrate on other critical project tasks, such as optimization and
testing.

The proposed tools that can generate relational schemas from natural language requirements and
entity-relationship diagrams (ERDs) utilizing LLMs represent a significant advancement in the field of
database design and management. These tools leverage NLP to accurately interpret user specifications
and employ the advanced capabilities of LLMs to create detailed and efficient database schemas. This
automation not only enhances the accuracy and consistency of database structures but also democratizes
the design process, enabling individuals with varying levels of technical expertise to contribute. By
bridging the gap between human language and complex database architecture, these tools streamline
the design process, reduce errors, and foster the development of more effective and user-friendly
database systems. This paradigm shift not only enhances productivity but also paves the way for future
innovations in intelligent, automated database management solutions.

Background

At the planning phase, stakeholders collaborate to ascertain the purpose of the database [Teniente,
Urpi, 2003]. Subsequently, stakeholders will establish objectives for the database, which help formalize
its purpose into measurable goals. These objectives must encompass the database systems, applications,
and technologies involved. The second stage, termed system definition, refines the identification of
users and the types of tasks they will undertake. The requirements collection and analysis phase, often
the most intricate, encompasses requirements determination, structured analysis, and data collection.
Subsequently, the database designer begins to ascertain the data to be stored and the interrelations
among data elements.

The creation of the database schema is contingent upon the database conceptual model,
which underpins all system development. The conceptual model is designed to represent the overall
structure of the target system and the intended usage by prospective users. Database design,
a comprehensive planning process, is essential for acquiring, storing, managing, sharing data among
multiple users, recovering data, and ensuring its availability on demand. The database design lifecycle
encompasses six steps: planning, system definition, requirements collection and analysis, database
design, implementation and conversion, and operation and maintenance.

A database schema is a description of the structure of the database and the data it contains,
viewed from specific perspectives referred to as schema levels [Burgin, 2005]. The view at different
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schema levels is pertinent to database users, administrators, and designers for varying purposes. The
design of the database schema is tailored to meet the specific needs of the target user. Understanding
the intended application of the database aids the schema designer in making critical design decisions
regarding the organization and representation of data. Three schema types exist: physical schema,
logical schema, and external schema. The physical schema represents the internal organization of the
database; the logical schema delineates the organization of information, while the external schema
defines the user’s view of the data, including data structures, query language, and data manipulation.

Grasping the specifications (requirements) of a text involves addressing numerous issues related
to enterprise databases, particularly schema integration challenges and potential solutions [Jin et al.,
2018]. Recent advancements have led to the creation of programs (schemas) capable of identifying
the optimal alignment of source schemas, primarily relying on the Structure Query Language
(SQL) definitions of both input schemas. Unfortunately, in many instances, data must be exchanged
(integrated) between two different organizations utilizing distinct database management systems, and
often only the original organization’s schema SQL definition is accessible.

Consequently, a multiresolution schema mapping system utilizing XML file structures for dataset
description has been demonstrated.

To gain a deeper understanding of the database structure, designers meticulously analyze the
entity sets using a systematic methodology. The process of constructing a database according to the
entity relationship diagram (ERD) follows a series of steps [Pieris, Wijegunesekera, Dias, 2020]. This
process commences with an analysis of the provided ERD, during which the time consumed and
any redundancies or extraneous data types are assessed. Designers are responsible for identifying the
parent entity set and segmenting its related attribute sets to mitigate the complexity of the tables [Kim,
Kanezaki, Tanaka, 2020]. By reducing table complexity, query performance can be enhanced. Designers
will also identify all attribute sets participating in the relationship sets linked to their respective
entity sets.

The schema information of a database system reflects the underlying data structure in the form
of tables/relations, keys, integrity constraints, indexes, and access structures [Candel, Garcı́a-Molina,
Ruiz, 2023]. The schema is often referred to as metadata, as it describes the content of the data stored
in the database [Trummer, 2021]. This schema metadata is utilized in various database applications,
including query processing, query optimization, physical data storage, search, data integration, and
indexing [Proper, Halpin, 2021].

Humans possess a remarkable capacity for using language to express themselves and establish
connections. This capability begins developing in early childhood and continues to grow throughout
life. Conversely, machines lack this innate ability to understand and communicate like humans,
unless equipped with sophisticated AI algorithms. The quest to enable machines to read, write, and
communicate like humans has long been a challenge and aspiration [Chowdhary, Chowdhary, 2020;
Hadi et al., 2023].

Artificial Intelligence (AI) aims to create systems that can emulate human intelligence and
skills [Zhao et al., 2023]. In the 18th century, philosopher Denis Diderot proposed that if a parrot
could answer every question, it might as well be considered intelligent [Liu et al., 2023a]. While
Diderot’s contemplation centered on living creatures, it sparked the notion that a highly intelligent
entity could mimic human behavior.

In the 1950s, Alan Turing furthered this concept by introducing the Turing Test, a pivotal
criterion in AI designed to assess whether machines can exhibit intelligent behavior indistinguishable
from that of humans [Sumers et al., 2023].

In AI discourse, these intelligent entities are often referred to as “agents”, which are fundamental
components of AI systems. An agent in AI functions like an artificial being capable of sensing its
environment, making decisions, and acting upon those decisions using actuators [Weng, 2023].
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In [Zhao et al., 2023], the investigator reviews recent advancements in LLMs and their profound
impact on the AI community. The examination covers various aspects of LLMs, including pre-
configuration, adaptation, utilization, and performance assessment, alongside potential future directions.
Key insights highlight the robust capabilities of pre-trained models, particularly in addressing diverse
NLP challenges. Furthermore, the article underscores the significance of model scaling, which enhances
LLM performance and unveils specialized capabilities that may not be evident in smaller models. The
technological evolution of LLMs has revolutionized AI algorithm development, resulting in substantial
progress and garnering considerable attention within academic and industrial spheres. As advancements
continue, remaining challenges and future research directions will be explored to determine the
necessity for ongoing investigation and innovation in LLM studies.

Figure 1 below an evolution process of the four generations of language models (LM) from the
perspective of task-solving capacity. For: A neural probabilistic language model (NPLM) [Manhaeve
et al., 2021], and Natural language processing (NLPS) [Chowdhary, Chowdhary, 2020].

Figure 1. The evolution of language models across four generations, highlighting task-solving capabilities [Zhao
et al., 2023]

By exploring the impact of LLMs on NLP tasks, it is clear that these findings provide
transformative benefits in many areas. With their extensive prior training in diverse groups, LLM
holders demonstrate strong abilities in understanding and generating human expressions, and thus
language understanding and generation tasks. Specifically, the greatly expanded LLM, which has
achieved success through its large model size, is highly optimized for linguistic programming tasks.
It has a large volume of more parameters, allowing it to accurately capture and reproduce subtle
linguistic features in tasks such as language translation, sentiment analysis, question answering, and
text. Additionally, MBA workers have been highlighted for revolutionizing applications such as
login software, virtual assistants and translation systems, promising more natural and engaging user
experiences. LLM’s impact scale has ushered in a new era in AI algorithm development, identifying
important and most likely non-NLP tasks for innovation and progress. Important benefits such as
language translation, sentiment analysis, and question answering include particularly notable texts from
the larger MBA, demonstrating the ability to make impacts across diverse applications and domains.
Notwithstanding this, significant research and exploration remain to address the remaining challenges
in the field of LLM towards new frontiers of sole discovery. Global language volumes (LLMs) have
become prominent in a variety of applications. In the field of language translation, they go a long
way in dramatically improving the performance of translation software by capturing subtle linguistic
features and producing more distinctive translations. Likewise, in sentiment analysis, larger language
models show greater understanding and analysis of the poet in the text, leading to better results on
sentiment analysis tasks. Furthermore, in the question-answering task, MBA majors show an improved
understanding of the micro-advertising questions, thus increasing the overall accuracy of answering
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questions. In addition, larger LLM programs excel at creating text assignments, producing performative
and contextually connected text suitable for use in applications such as chatbots, virtual assistants, and
content. Overall, it is a significant expansion of cutting-edge MBAs (LLMs) for performance in various
related fields, making it the most important in natural and industrial technological applications. Figure 2
presents the applications of LLMs in research directions, options, and downstream fields [Zhao et al.,
2023].

Figure 2. Applications of LLMs in various research directions and industrial fields [Zhao et al., 2023]

LLMs’ ability to handle large volumes of data and generate contextually appropriate text makes
them invaluable in a range of applications. Their performance in tasks such as language translation and
sentiment analysis demonstrates their capacity to improve accuracy and produce more refined outputs.
Furthermore, their proficiency in generating diverse and creative text has made LLMs indispensable in
fields like content creation, virtual assistants, and beyond.

Overall, LLMs have ushered in a new era of AI development, presenting remarkable
opportunities across both natural language and non-NLP tasks. The research community continues to
explore new frontiers, seeking to address the challenges and unlock the full potential of these advanced
models.

Literature review

LLMs have been successfully utilized in many research areas within the software engineering
field. In this section, an overview of existing studies employing LLMs for Software Engineering (SE)
is provided. These studies are categorized into four main phases of the Software Development Life
Cycle (SDLC): software requirements and design, software development, software testing, and software
maintenance. Each phase involves various code-related tasks, such as fault localization and program
repair in the software maintenance phase.

The proposed ERD bot

The proposed model, ERD bot, can read any system requirement specifications in either text or
Entity-Relationship Diagrams (ERD) and analyze them to generate a relational database schema script
in SQL. Figure 3 illustrates the working framework of the proposed ERD bot.

The ERD bot uses the Telegram messenger to input system requirement specifications in two
formats: human-written text (Fig. 4, a) and an ERD image (Fig. 4, b). The bot analyzes these inputs
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Table 1. Using LLMs in software requirements

Specific field Reference Description
Software Requirements
Generation

[Xie et al., 2023] The study provides suggestions for enhancing the
performance of LLMs in specification generation. It
includes exploring hybrid approaches and improving the
effectiveness of prompts used in LLM-based processes.

Software Specifications
Repair

[Hasan et al., 2023] A study evaluates ChatGPT’s use in repairing software
specifications in Alloy language. ChatGPT’s performance
is compared against existing automated repair methods,
revealing both strengths and areas for improvement.

Categorizing Software
Requirements

[Hey et al., 2020] NoRBERT efficiently classifies types of requirements using
transfer learning. The functional section of the NFR dataset
is labeled into classes like Function, Data, and Behavior.

GUI Layouts [Brie et al., 2023] Investigates whether LLM-based systems can enhance the
design process of GUI layouts. The study shows that
Instigator, an LLM-based system, parses the code of over
100k websites to create relevant GUI layouts.

Table 2. Using LLMs in software development

Specific field Author(s) Description
Code Generation [Li et al., 2023; Zhang et al., 2023] The study [Li et al., 2023] uses AceCoder

utilizes requirement-guided generation
combined with example retrieval to improve
code understanding and implementation,
and the work [Zhang et al., 2023] introduce
a method called Self-Edit, which enhances
code quality for competitive programming
tasks by utilizing execution results of
generated code from LLMs. The core of this
approach is a fault-aware code editor that can
edit and optimize the generated code.

Code Summarization [Sun et al., 2023] ChatGPT’s performance in code
summarization is evaluated, with comparisons
against NCS, CodeBERT, and CodeT5
models. While ChatGPT shows deeper
semantic understanding, it struggles with
complex code logic.

Code Search [Li et al., 2022a] Code Retriever learns semantic representations
of code functions using a large dataset of code-
text pairs, excelling in various code search
tasks across multiple languages.

Code Translation [Baltaji et al., 2023] A transformer-based LLM is used for cross-
lingual code translation, revealing practical
insights on language transfer, with Kotlin and
JavaScript showing high transferability.

using an LLM to generate the corresponding relational database schema script in SQL. The results are
then returned to the user through Telegram.

The second step involves analyzing the input data to generate SQL commands in the ERD bot
using an LLM. When a user sends a natural language query, the bot forwards it to the LLM, which
processes the query to generate the appropriate SQL commands that create the relational schema. The
database schema is then returned to the user via Telegram.
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Figure 3. The working framework of the proposed ERD bot

Table 3. Using LLMs in software testing

Specific field Reference Description
Fault Localization [Mohsen et al., 2023] Introduces a phase-based bug localization method using

BERT for package classification and source code
recommendation.

Vulnerability Detection [Steenhoek et al., 2023] Empirical study on LLM-based models for identifying
software vulnerabilities, analyzing nine approaches
including two LLM-based methods.

Unit Test Generation [Tang et al., 2023] Compares ChatGPT’s ability to generate unit tests
against the SBST tool EvoSuite, demonstrating
that ChatGPT generates executable unit tests with
significant success.

GUI Testing [Liu et al., 2023b] GPTDroid reframes the GUI testing challenge as
a question-answer task using LLMs, improving activity
coverage by 32 % and identifying numerous bugs.

Table 4. Using LLMs in software maintenance

Specific field Reference Description
Automated Program
Repair

[Jiang et al., 2023] Evaluates LLMs on different Program Repair (PR) benchmarks,
showing that fine-tuned LLMs can fix more bugs than traditional
deep learning methods.

Patch Correctness
Assessment

[Tian et al., 2023] Explores the use of representation learning models to predict
the correctness of patches generated by PR tools, achieving high
recall and precision.

Code Review [Li et al., 2022b] CodeReviewer, a Transformer-based model inspired by CodeT5,
automates code reviews by understanding code differences and
generating relevant review comments.

Test Update [Hu et al., 2023] CEPROT identifies and updates outdated test cases, achieving
impressive precision, recall, and F1 score in identifying obsolete
tests.

Results and discussion

To evaluate the performance and accuracy of the proposed tool, we tested it on five different
database schemas. The first database schema is from the University of Jordan’s ACAD system, which
assists academic staff in managing semester tasks. These tasks include exam-related operations such
as converting percentages to points, transferring, and updating marks, which require approvals from
instructors, department heads, and deans. Furthermore, the system generates inquiries and reports
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(a) (b)

Figure 4. (a) Text-based system requirement specifications input, (b) ERD image input

covering registered students, instructors, departments, and student numbers per course. It also manages
academic advising, reassignments, and other advising-related activities.

The second database schema pertains to a conference attendance system at Mutah University. In
this system, teachers submit conference attendance applications with details such as sponsorship and
fees. The application undergoes review at multiple levels, from the department head to the deanship of
scientific research. Notifications are sent via SMS at various stages of the review process, making the
system dynamic and interactive.

We compared key metrics such as the number of tables, fields per table, and relationships
between tables in the real databases with those generated by the proposed tool. The tool generally
generated a greater number of tables compared to the actual databases. This is attributed to its ability
to perform more accurate normalization of tables. The results are shown in Table 5.

Table 5. Comparison between real database system specification and proposed tool database system specification

Reference Input Metrics/Parameters Real DB system Proposed tool

Company schema
[Elmasri, 2021]

ERD # Entity 6 9
# Relationship 8 8

# Attribute 28 34

University schema
[Elmasri, 2021]

Text for system
requirements

# Entity 7 7
# Relationship 9 6

# Attribute 34 37

Conference system from
Mutah University

Text for system
requirements

# Entity 8 11
# Relationship 11 12

# Attribute 52 48

Bank system
[Scaler, 2023]

Text for system
requirements

# Entity 9 8
# Relationship 12 8

# Attribute 36 41

ACAD system from
University of Jordan

Text for system
requirements

# Entity 14
# Relationship 18

# Attribute 44
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The proposed tool offers significant advantages for systems analysts and software engineers
by aiding in the accurate construction of databases. This tool automates the processes of building
tables, defining attributes, identifying relationships between tables, and applying constraints, thereby
ensuring efficient and accurate database design. This automation results in reduced time, effort, and
costs associated with database construction, leading to the simultaneous generation of reliable and
optimized database schemas.

Conclusion and future works

In summary, the proposed tool is a valuable asset for systems analysts and software engineers,
enhancing their ability to understand system requirements and facilitating the accurate development of
databases. By automating tasks such as table creation, attribute specification, relationship definition,
and constraint enforcement, the tool greatly simplifies the database construction process. This results
in significant time, effort, and cost savings when compared to manual methods. Moreover, it ensures
a high level of accuracy, leading to more reliable and efficient database management systems. Looking
ahead, our goal is to enhance this tool by incorporating the ability to generate UML diagrams.
UML diagrams, such as class diagrams, sequence diagrams, and use case diagrams, provide visual
representations of system architectures, helping developers and stakeholders better understand the
relationships between entities and the data flow within the system. By utilizing UML diagrams, the
interpretation of complex database structures becomes more unified and accurate, ultimately improving
the overall development and maintenance process.
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