All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Mathematical model of tumor growth with migration and proliferation dichotomy
Mathematical model of infiltrative tumour growth taking into account transitions between two possible states of malignant cell is investigated. These transitions are considered to depend on oxygen level in a threshold manner: high oxygen concentration allows cell proliferation, while concentration below some critical value induces cell migration. Dependence of infiltrative tumour spreading rate on model parameters has been studied. It is demonstrated that if the level of tissue oxygenation is high, tumour spreading rate remains almost constant; otherwise the spreading rate decreases dramatically with oxygen depletion.
- Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue. // Computer Research and Modeling. — 2014. — V. 6, no. 4. — P. 585. DOI: 10.20537/2076-7633-2014-6-4-585-604 , , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"