Regularization, robustness and sparsity of probabilistic topic models

 pdf (170K)  / Annotation

List of references:

  1. К. Д. Маннинг, П. Рагхаван, Х. Шютце. Введение в информационныйпоиск. — Вильямс, 2011.
  2. A. Asuncion, M. Welling, P. Smyth, Y. W. Teh. On smoothing and inference for topic models / Int’l conf. on Uncertainty in Artificial Intelligence. — 2009.
  3. D. M. Blei, A. Y. Ng, M. I. Jordan. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — V. 3. — P. 993–1022.
  4. C. Chemudugunta, P. Smyth, M. Steyvers. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — V. 19. — P. 241–248.
  5. A. Daud, J. Li, L. Zhou, F. Muhammad. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China. — 2010. — V. 4, no. 2. — P. 280– 301. — DOI: 10.1007/s11704-009-0062-y.
  6. A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm // Journal of the Royal Statistical Society, Series B. — 1977. — no. 34. — P. 1–38. — MathSciNet: MR0501537.
  7. J. Eisenstein, A. Ahmed, E. P. Xing. Sparse additive generative models of text / International Conference on Machine Learning, ICML’11. — 2011. — P. 1041–1048.
  8. M. Girolami, A. Kab´an. On an Equivalence between PLSI and LDA / Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. — ACM, 2003. — P. 433–434.
  9. T. Hofmann. Probabilistic latent semantic indexing / Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — P. 50–57.
  10. M. Steyvers, T. Griffiths. Finding scientific topics // Proceedings of the National Academy of Sciences. — 2004. — V. 101, no. 1. — P. 5228–5235. — ads: 2004PNAS..101.5228G.
  11. H. Wallach. Structured Topic Models for Language. — 2008. — Ph.D. thesis.
  12. H. Wallach, D. Mimno, A. McCallum. Rethinking LDA: Why priors matter / Advances in Neural Information Processing Systems 22. — 2009. — P. 1973–1981.
  13. Y. Wang. Distributed Gibbs sampling of latent Dirichlet allocation: The gritty details. — 2008. — http://www.dbgroup.cs.tsinghua.edu.cn/wangyi/lda/lda.pdf.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"