High Performance Computing for Blood Modeling

 pdf (720K)  / Annotation

List of references:

  1. Ф.И. Атауллаханов, Е.С. Лобанова, О.Л. Морозова и др. Сложные режимы распространения возбуждения и самоорганизации в модели свертывания крови // Успехи физических наук. — 2007. — Т. 177, № 1. — 18 с.
  2. Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котофский и др. Гистология, цитология и эмбриология. — М: Медицина, 2002. — 744 с. — 5-е изд., перераб. и доп.
  3. Д.А. Бикулов, Д.С. Сенин, Д.С. Демин и др. Реализация метода решеточных уравнений Больцмана для расчетов на GPU-кластере // Вычислительные методы и программирование. — 2012. — Т. 13. — С. 13–19.
  4. Р. Галлагер. Метод конечных элементов. Основы. — пер. с англ. — М: Мир, 1984. — 428 с.
  5. Гемостаз. Физиологические механизмы, принципы диагностики основных форм геморрагических заболеваний. — СПб: Издательство СПбГМУ, 1999. — 115 с. — Под ред. Петрищева Н.Н., Папаян Л.П.
  6. Дж. Голуб, Ч. Ван Лоун. Матричные вычисления. — М: Мир, 1999. — 548 с.
  7. А.И. Грицюк, Е.Н. Мосова, И.А. Грицюк. Практическая гемостазиология. — Киев: Здоров’я, 1994. — 256 с.
  8. К. Каро, Т. Педли, Р. Шротер, У. Сид. Механика кровообращения. — М: Мир, 1981. — 607 с.
  9. Д.М. Климов, А.Г. Петров, Д.В. Георгиевский. Вязкопластические течения: динамический хаос, устойчивость, перемешивание. — М: Наука, 2005. — 394 с.
  10. Дж. Коннор, К. Бреббиа. Метод конечных элементов в механике жидкости. — Л: Судостроение, 1979. — 264 с.
  11. А.И. Лобанов. Модели клеточных автоматов // Компьютерные исследования и моделирование. — 2010. — Т. 2, № 3. — С. 273–293. — DOI: 10.20537/2076-7633-2010-2-3-273-293.
  12. П.В. Мазуров. Физиология и патология тромбоцитов. — М: Литтерра, 2011. — 456 с.
  13. В.Г. Мазья. Граничные интегральные уравнения / Анализ – 4. — Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления. — М: ВИНИТИ, 1988. — Т. 27. — С. 131–228.
  14. М.А. Пантелеев, Я.Н. Котова, А.А. Токарев и др. Механизмы регуляции свертывания крови // Терапевтический архив. — 2008. — № 7. — С. 88–91.
  15. М.А. Пантелеев, С.А. Васильев, Е.И. Синауридзе и др. Практическая коагулология. — М: Практическая медицина, 2011. — 192 с. — Под ред. Воробьева А.И.
  16. Р.П. Федоренко. Введение в вычислительную физику. — учеб. пособие: для вузов. — М: Изд-во Моск. физ.-техн. ин-та, 1994. — 528 с.
  17. P.A. Aarts, S.A. van den Broek, G.W. Prins, et al. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood // Arteriosclerosis. — 1988. — V. 8, no. 6. — P. 819–824. — DOI: 10.1161/01.ATV.8.6.819.
  18. J. Abel, K. Balasubramanian, M. Bargeron. Applications tuning for streaming SIMD extensions // Intel Technology Journal. — 1999. — V. Q2. — P. 1–13.
  19. C.K. Aidun, J.R. Clausen. Lattice-Boltzmann method for complex flows // Annual review of fluid mechanics. — 2010. — V. 42. — P. 439–472. — DOI: 10.1146/annurev-fluid-121108-145519. — MathSciNet: MR2647598. — ads: 2010AnRFM..42..439A.
  20. A.T. Barker, X. Cai. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling // Journal of computational physics. — 2009. — MathSciNet: MR2713045.
  21. J. Barnes, P. Hut. A hierarchical O(N logN) force-calculation algorithm // Nature. — 1986. — V. 324. — P. 446–449. — DOI: 10.1038/324446a0. — ads: 1986Natur.324..446B.
  22. H. Ba¨umler, E. Donath, A. Krabi, et al. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran // Biorheology. — 1996. — V. 33, no. 4–5. — P. 333–351.
  23. M. Bernaschi, M. Fatica, S. Melchionna. A flexible high performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries / Concurrency and Computation: Practice and Experience. — 2009.
  24. M. Bernaschi, S. Melchionna, S. Succi, et al. MUPHY: "A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations" // Computer physics communication. — 2009. — V. 180. — P. 1495–1502. — DOI: 10.1016/j.cpc.2009.04.001. — ads: 2009CoPhC.180.1495B.
  25. J. Bernsdorf, S.E. Harrison, S.M. Smith, et al. Applying the lattice Boltzmann technique to biofluids: A novel approach to simulate blood coagulation // Computers and Mathematics with Applications. — 2008. — V. 55. — P. 1408–1414. — DOI: 10.1016/j.camwa.2007.08.007. — MathSciNet: MR2406716.
  26. Blood: physiology and circulation. — Britannica educational publiching, 2011. — 239 p. — Edited by K.Rogers.
  27. K. Boryczko, W. Dzwinel, D.A. Yuen. Parallel implementation of the fluid particle model for simulating complex fluids in the mesoscale // Concurrency and computation: Practice and Experience. — 2002. — V. 14. — P. 137–161. — DOI: 10.1002/cpe.619.
  28. J. Boyd, J. Buick, S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model // Journal of physics A: Mathematical and General. — 2006. — no. 39. — P. 14241–14247. — DOI: 10.1088/0305-4470/39/46/001. — MathSciNet: MR2276212. — ads: 2006JPhA...3914241B.
  29. A. Chandramowlishwaran, S. Williams, L. Oliker, et al. Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures / Proceedings of IPDPS. — Atlanta, GA: IEEE Computer Society, 2010.
  30. H. Chen, S. Chen, W.H. Matthaeus. Lattice Boltzmann model for simulating flows with multiple phases and components // Physical review A. — 1992. — V. 45. — P. 5339–5342. — ads: 1992PhRvA..45.5339C.
  31. W. Chen, K. Ward, Q. Li, et al. Agent based modeling of blood coagulation system: implementation using a GPU based high speed framework / 33rd Annual International Conference of the IEEE EMBS Boston. — Massachusetts USA, 2011. — August 30 — September 3.
  32. C. Chevalier, F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering // Parallel Computing. — 2008. — P. 318–331. — DOI: 10.1016/j.parco.2007.12.001. — MathSciNet: MR2428880.
  33. J.R. Clausen, Jr. D.A. Reasor, C.K. Aidun. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture // Computer Physics Communications. — 2010.
  34. J.T.B. Crawley, S. Zanardelli, C.K.N.K. Chion, et al. The central role of thrombin in hemostasis // Journal of thrombosis and haemostasis. — 2007. — V. 5 (suppl. 1). — P. 95–101. — DOI: 10.1111/j.1538-7836.2007.02500.x.
  35. CUDA. — http://www.nvidia.com/object/cuda_home_new.html.
  36. X. Descovich, G. Pontrelli, S. Succi, et al. Modeling elastic walls in Lattice Boltzmann simulations of arterial blood flow // IFAC Proceedings Volumes. — 2012. — V. 45, no. 2. — P. 936–941. — DOI: 10.3182/20120215-3-AT-3016.00165.
  37. W. Dzwinel, K. Boryczko, D.A. Yuen. A discrete-particle model of blood dynamics in capillary vessels // Journal Of Colloid And Interface Science. — 2003. — V. 258, no. 1. — P. 163–173. — DOI: 10.1016/S0021-9797(02)00075-9. — ads: 2003JCIS..258..163D.
  38. W. Dzwinel, D.A. Yuen. A two-level, discrete particle approach for large-scale simulation of colloidal aggregates // International Journal of Modern Physics C. — 2000. — V. 11, no. 5. — P. 1037–1062. — DOI: 10.1142/S0129183100000882. — ads: 2000IJMPC..11.1037D.
  39. W. Dzwinel, D.A. Yuen. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model // Journal of Colloid and Interface Science. — 2002. — no. 225. — P. 179–190.
  40. W. Dzwinel, D.A. Yuen, K. Boryczko. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model // Journal of Molecular Modeling. — 2002. — no. 8. — P. 33–43.
  41. P. Espan˜ol. A fluid particle model // Physical Review. — 1998. — V. 57, no. 3. — P. 2930–2948.
  42. S.R. Fulton. Semi-implicit time differencing. — Potsdam, NY: Department of Mathematics and Computer Science Clarkson University, 2004. — Technical Report No. 2002-01. — Revised June 1.
  43. S.G. Gabbanelli, G. Drazer, J. Koplik. Lattice Boltzmann method for non-Newtonian fluid flows // Physical review E. — 2006. — V. 72. — 046312. — DOI: 10.1103/PhysRevE.72.046312. — ads: 2005PhRvE..72d6312G.
  44. J.G. Gay, B.J. Berne. Modification of the overlap potential to mimic a linear site–site potential // Journal of Chemical Physics. — 1981. — V. 74. — P. 3316–3319. — ads: 1981JChPh..74.3316G.
  45. L. Graf, D.A. Tsakiris. Anticoagulant treatment: the end of the old agents? // Swiss medical weekly. — 2012. — V. 142. — P. w13864.
  46. L. Greengard, V. Rokhlin. A fast algorithm for particle simulations // Journal of computational physics. — 1987. — V. 73. — P. 325–348. — DOI: 10.1016/0021-9991(87)90140-9. — MathSciNet: MR0918448. — ads: 1987JCoPh..73..325G.
  47. B.P. Helmke, S.N. Bremne, B.W. Zweifach, et al. Mechanisms for increased blood flow resistance due to leukocytes // American Journal of Physiology. — 1997. — V. 273. — P. H2884–H2890.
  48. J. Hoffman, J. Jansson, R. Vilela de Abreu. Unicorn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry // Computers & Fluids. — 2012.
  49. P.J. Hoogerbrugge, E.J.M.V.A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics // Europhysics Letters. — 1992. — V. 19, no. 3. — P. 155–160. — DOI: 10.1209/0295-5075/19/3/001. — ads: 1992EL.....19..155H.
  50. G. Karypis. Metis/Parmetis web page, University of Minnesota. — 2008. — http://glaros.dtc.umn.edu/gkhome/views/metis.
  51. M. Levi, E. Eerenberg, P.W. Kamphuisen. Bleeding risk and reversal strategies for old and new anticoagulants and antiplatelet agents // Journal of Thrombosis and Haemostasis. — 2011. — no. 9. — P. 1705–1712. — DOI: 10.1111/j.1538-7836.2011.04432.x.
  52. S.H. Kim, H. Pitsch, I.D. Boyd. Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers // Journal of computational physics. — 2008. — V. 227. — P. 8655–8671. — DOI: 10.1016/j.jcp.2008.06.012. — ads: 2008JCoPh.227.8655K.
  53. M. Martone, S. Filippone, S. Tucci, et al. Utilizing recursive storage in sparse matrix-vector multiplication preliminary considerations / CATA. — 2010.
  54. M.D. Mazzeo, P.V. Coveney. HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries // Computer physics communication. — 2008. — V. 178. — P. 894. — DOI: 10.1016/j.cpc.2008.02.013. — MathSciNet: MR2672075. — ads: 2008CoPhC.178..894M.
  55. G.M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing. — Ottawa, Canada: IBM Ltd, 1966. — Technical Report.
  56. B. Neu, S.O. Sowemimo-Coker, H.J. Meiselman. Cell-cell affinity of senescent human erythrocytes // Biophysical journal. — 2003. — V. 85. — P. 75–84. — DOI: 10.1016/S0006-3495(03)74456-7. — ads: 2003BpJ....85...75N.
  57. R. Ouared, B. Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes // Journal of Statistical Physics. — 2005. — V. 121, no. 1/2. — P. 209–221. — DOI: 10.1007/s10955-005-8415-x. — MathSciNet: MR2185466. — ads: 2005JSP...121..209O.
  58. S.J. Owen, J.F. Shepherd. Cubit project web page. — 2008. — http://cubit.sandia.gov/.
  59. G. Peano. Sur une courbe, qui remplit toute une aire plane // Mathematische Annalen. — 1890. — V. 36, no. 1. — P. 157–160. — DOI: 10.1007/BF01199438. — MathSciNet: MR1510617.
  60. A. Peters, S. Melchionna, E. Kaxiras. Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: full heart-circulation system at near red-blood cell resolution / SC10. — November 2010, New Orleans, Louisiana, USA.
  61. I. Pivkin, G.E. Karniadakis. Accurate coarse-grained modeling of red blood cells // Physical review letters. — 2008. — V. 101. — 118105. — DOI: 10.1103/PhysRevLett.101.118105. — ads: 2008PhRvL.101k8105P.
  62. V. Pivkin, P.D. Richardson, G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2006. — V. 103, no. 46. — P. 17164–17169. — DOI: 10.1073/pnas.0608546103. — ads: 2006PNAS..10317164P.
  63. P. Prandoni, A.W. Lensing, A. Piccoli, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis // Blood. — 2002. — V. 100. — P. 3484–3488. — DOI: 10.1182/blood-2002-01-0108.
  64. Y.H. Qian, D. d’Humieres, P. Lallemand. Lattice BGK models for Navier-Stokes equations // Europhysics Letters. — 1992. — V. 17, no. 6. — P. 479–483. — DOI: 10.1209/0295-5075/17/6/001. — ads: 1992EL.....17..479Q.
  65. A. Rahimian, I. Lashuk, S.K. Veerapaneni, et al. Petascale direct numerical simulation of blood flow on 200K cores and heterogeneous architectures / Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. — 2010. — P. 1–11.
  66. Repast. Repast organization for architecture and design, "Repast". — 2008. — http://repast.sourceforge.net/.
  67. A.S. Sangani, G. Mo. Inclusion of lubrication forces in dynamic simulations // Physics of fluids. — 1994. — V. 6, no. 5. — P. 1653. — DOI: 10.1063/1.868228. — ads: 1994PhFl....6.1653S.
  68. S. Succi. The Lattice Boltzmann equation for fluid dynamics and beyond. — USA: Oxford University Press, 2001. — MathSciNet: MR1857912.
  69. C.H. Sun, L.L. Munn. Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis // Biophysical Journal. — 2005. — V. 88, no. 3. — P. 1635–1645. — DOI: 10.1529/biophysj.104.051151. — ads: 2005BpJ....88.1635S.
  70. L.M. Surhone, M.T. Tennoe, S.F. Henssonow. Fast multipole method. — Betascript Publishing, 2011. — 128 p.
  71. T.E. Tezduyar, A. Sameh. Parallel finite element computations in fluid mechanics // Computer Methods In Applied Mechanics And Engineering. — 2006. — V. 195, no. 13–16. — P. 1872–1884. — DOI: 10.1016/j.cma.2005.05.038. — MathSciNet: MR2203996. — ads: 2006CMAME.195.1872T.
  72. A. Tokarev, G. Panasenko, F. Ataullakhanov. Segregation of flowing blood: mathematical description // Math. Model. Nat. Phenom. — 2011. — V. 6, no. 5. — P. 281–319. — DOI: 10.1051/mmnp/20116511. — MathSciNet: MR2825230.
  73. Top 500 list, june 2011. — http://www.top500.org/list/2011/06.
  74. Top 500 list, november 2011. — http://www.top500.org/list/2011/11.
  75. S.K. Veerapaneni, A. Rahimian, G. Biros, D. Zorin. A fast algorithm for simulating vesicle flows in three dimensions // Journal of Computational Physics. — 2011. — V. 230, no. 14. — P. 5610–5634. — DOI: 10.1016/j.jcp.2011.03.045. — MathSciNet: MR2799527. — ads: 2011JCoPh.230.5610V.
  76. N. Wiener, A. Rosenblueth. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle // Arch. Inst. Cardiol. Mexico. — 1946. — V. 205, no. 16. — MathSciNet: MR0025140.
  77. Wiener process. — http://en.wikipedia.org/wiki/Wiener_process.
  78. U. Wilensky. NetLogo. — http://ccl.northwestern.edu/netlogo/.
  79. Center for connected learning and computer-based modeling. — Evanston, IL: Northwestern University, 1999.
  80. L. Ying, G. Biros, D. Zorin, H. Langston. A new parallel kernel-independent fast multiple algorithm / Proceedings of SC03, The SCxy Conference series. — Phoenix, Arizona: ACM/IEEE, 2003.
  81. H. Zhao, A.H.G. Isfahani, L.N. Olson. A spectral boundary integral method for flowing blood cells // Journal of Computational Physics. — 2010. — V. 229. — P. 3726–3744. — MathSciNet: MR2609750. — ads: 2010JCoPh.229.3726Z.
  82. A.Z. Zinchenko, R.H. Davis. Large-scale simulations of concentrated emulsion flows // Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences. — 2003. — V. 361. — P. 813–845. — DOI: 10.1098/rsta.2003.1178. — ads: 2003RSPTA.361..813Z.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"