All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Mathematical modeling of stochastic equilibria and business cycles of Goodwin model
pdf (1693K)
/ Annotation
List of references:
- Анализ стохастических аттракторов при бифуркации точка покоя — цикл // Автоматика и телемеханика. — 2007. — № 10. — С. 53–69. , .
- Флуктуации в динамических системах под действием малых случайных возмущений. — М: Наука, 1979. , .
- Первое приближение квазипотенциала в задачах об устойчивости систем со случайными невырожденными возмущениями // Прикл. математика и механика. — 1995. — Т. 59, № 1. — С. 53–63. , .
- Введение в эконофизику: статистические и динамические модели. — ИКИ, 2012. , .
- Введение в синергетику. Хаос и структуры. — М: Едиториал УРСС, 2004. .
- Канонические модели нелинейной динамики в экономике // Известия вузов. Прикладная нелинейная динамика. — 2006. — Т. 14, № 2. — С. 75–93. .
- Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. — М: Наука, 1969. .
- Об эконофизике и её месте в современной теоретической экономике // УФН. — 2011. — Т. 181:7. — С. 767–773. , , , , .
- Random Dynamical Systems. — Berlin–Heidelberg: Springer-Verlag, 1998. — MathSciNet: MR1723992. .
- Stochastic sensitivity of 3D-cycles // Mathematics and Computers in Simulation. — 2004. — V. 66. — P. 55–67. — DOI: 10.1016/j.matcom.2004.02.021. — MathSciNet: MR2064727. , .
- Sensitivity analysis of the stochastically and periodically forced Brusselator // Physica A. — 2000. — V. 278. — P. 126–239. — DOI: 10.1016/S0378-4371(99)00453-7. — ads: 2000PhyA..278..126B. , .
- Stability and Hopf bifurcation analysis on Goodwin model with three delays // Chaos, Solutions and Fractals. — 2011. — no. 44. — P. 613–618. — DOI: 10.1016/j.chaos.2011.05.010. — MathSciNet: MR2822546. — ads: 2011CSF....44..613C. , .
- Complex Systems Approach to Economic Dynamics. — Berlin–Heidelberg: Springer-Verlag, 2007. — MathSciNet: MR2340138. .
- Economic dynamics. — Berlin: Springer, 1997. — MathSciNet: MR2841165. .
- The nonlinear accelerator and the persistence of business cycles // Econometrica. — 1951. — V. 19, no. 1. — P. 1–17. — DOI: 10.2307/1907905. .
- Chaos and nonlinear dynamics: an introduction for scientists and engineers. — New York: Oxford University Press, 1994. — MathSciNet: MR1263025. .
- Catastrophes and chaos in business cycle theory / Proceedings of the 4th Polish symposium on Econo- and Sociophysics. — Rzeszrow, Poland, 2009. .
- Chaos prediction and control of Goodwin’s nonlinear accelerator model // Nonlinear analysis: Real world applications. — 2011. — no. 12. — P. 1950–1960. — MathSciNet: MR2800990. , , , .
- Nonlinear dynamical economics and chaotic motion. — Berlin–Heidelberg–New York: Springer, 1993. — 2nd ed. — MathSciNet: MR1357664. .
- Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin’s nonlinear accelerator model reconsidered // Chaos, Solutions and Fractals. — 2002. — no. 13. — P. 957–965. — DOI: 10.1016/S0960-0779(01)00121-7. — MathSciNet: MR1874785. — ads: 2002CSF....13..957L. , .
- Nonlinear economic dynamics. Lecture notes in economics and mathematical systems. — Berlin: Spriger-Verlag, 1989. — V. 336. — MathSciNet: MR1116554. .
- From catastrophy to chaos: a general theory of economic discontinuities. — Boston: Kluwer Academic Publishers, 1991. — MathSciNet: MR1272014. .
- Chaos theory before Lorenz // Nonlinear dynamics psychology and life sciences. — 2009. — V. 13, no. 3. — P. 257–269. — MathSciNet: MR2543393. .
- Macroeconomics: an introduction to advanced methods. — Toronto: Dryden, 1996. .
- Goodwin’s nonlinear theory of the business cycle: An electroanalog solution // Econometrica. — 1953. — V. 21, no. 3. — P. 390–411. — DOI: 10.2307/1905446. , , .
- Topological gap filling at crisis // Phys Rev E. — 2000. — no. 61. — P. 5019–5032. — DOI: 10.1103/PhysRevE.61.5019. — MathSciNet: MR1788739. , , , .
- Nonlinear dynamics and heterogeneous interacting agents. — Lecture notes in economics and mathematical systems. — Berlin: Springer, 2005. — V. 550. — Thomas L., Reitz S., Samanidou E., editors. — MathSciNet: MR2130987.
- Dynamic analysis of policy lag in a Keynes-Goodwin model: Stability, instability, cycles and chaos // Journal of Economic Behavior and Organization. — 2007. — V. 62, no. 3. — P. 441–469. — DOI: 10.1016/j.jebo.2004.10.014. , .
- Differential equations, and chaos in economics // Series on Advances in Mathematics for Applied Sciences. World Scientific. — 2005. — V. 68. — MathSciNet: MR2169160. .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science