All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
On the mechanisms for formation of segmented waves in active media
pdf (847K)
/ Annotation
List of references:
- Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия» // Компьютерные исследования и моделирование. — 2011. — Т. 3, № 2. — С. 135–146. — DOI: 10.20537/2076-7633-2011-3-2-135-146 , .
- Волны и динамические структуры в реакционно-диффузионных системах. Реакция Белоусова–Жаботинского в обращенной микроэмульсии // УФН. — 2004. — Т. 174, № 9. — С. 991–1010. .
- Математическая биофизика. — М: Наука, 1984. — 304 с. , , .
- Chaos in the non-stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures // Nature. — 1984. — V. 308. — P. 834–835. — DOI: 10.1038/308834a0. — ads: 1984Natur.308..834A. , , .
- Long-lasting dashed waves in a reactive microemulsion // Phys. Chem. Chem. Phys. — 2008. — V. 10. — P. 1094–1096. — DOI: 10.1039/b714705h. , , , , , , , .
- Impulses and physiological states in theoretical models of nerve membrane // Biophysical J. — 1961. — V. 1. — P. 445–466. — DOI: 10.1016/S0006-3495(61)86902-6. — ads: 1961BpJ.....1..445F. .
- Thermodynamic theory of structure, stability and fluctuations. — New York: Wiley, 1971. , .
- Biological pattern-formation — from basic mechanisms to complex structures // Rev. Mod. Phys. — 1994. — V. 66, no. 4. — P. 1481–1507. — DOI: 10.1103/RevModPhys.66.1481. — ads: 1994RvMP...66.1481K. , .
- Chemical Oscillations, Waves, and Turbulence. — Berlin: Springer-Verlag, 1984. — 198 p. — MathSciNet: MR0762432. .
- Experimental and modeling study of oscillations in the chlorine dioxide–iodine–malonic acid reaction // J. Am. Chem. Soc. — 1990. — V. 112. — P. 9104–9110. — DOI: 10.1021/ja00181a011. , , .
- Developmental biology: the Turing model comes of molecular age // Science. — 2006. — V. 314, no. 5804. — P. 1397–1398. — DOI: 10.1126/science.1136396. , , .
- Mathematical Models for Biological Pattern Formation / IMA Volumes in Mathematics and its Applications. — Springer, 2000. — V. 121. , .
- Spiral Breakup in Excitable Tissue due to Lateral Instability // Phys. Rev. Lett. — 1997. — V. 78. — P. 1819–1822. — DOI: 10.1103/PhysRevLett.78.1819. — ads: 1997PhRvL..78.1819M. , .
- Models of biological pattern formation: from elementary steps to the organization of embryonic axes // Curr. Top. Dev. Biol. — 2008. — V. 81. — P. 1–63. — DOI: 10.1016/S0070-2153(07)81001-5. .
- Nonequilibrium Structures in Condensed Systems // Science. — 1996. — V. 272. — P. 1596. — DOI: 10.1126/science.272.5268.1596. , .
- Interfaces between Competing Patterns in Reaction-diffusion Systems with Nonlocal Coupling. — Dresden, 2001. — Dissertation. .
- Self-Organization in Non-Equilibrium Systems. — New York: Wiley, 1977. — 491 p. — MathSciNet: MR0522141. , .
- An iodine-free chlorite-based oscillator: The chloritethiosulfate reaction in a C.S.T.R // J. Phys. Chem. — 1982. — V. 86. — P. 431–432. — DOI: 10.1021/j100393a001. , , .
- Transition from spirals to defect turbulence driven by a convective instability // Nature. — 1996. — V. 379. — P. 143–145. — DOI: 10.1038/379143a0. — ads: 1996Natur.379..143O. , .
- Segmented waves in a reactiondiffusion-convection system // Chaos. — 2012. — V. 22. — 11 p. — 037109. — DOI: 10.1063/1.4752194. — MathSciNet: MR3388655. — ads: 2012Chaos..22c7109R. , , , .
- Chemical self-organization in self-assembling biomimetic systems // Ecological Modelling. — 2009. — V. 220. — P. 1857–1864. — DOI: 10.1016/j.ecolmodel.2009.04.040. , .
- The chemical basis of morphogenesis // Philos. Trans. R. Soc. Lond. B. Biol. Sci. — 1952. — V. 237. — P. 37–72. — DOI: 10.1098/rstb.1952.0012. — MathSciNet: MR3363444. — ads: 1952RSPTB.237...37T. .
- Pattern Formation in a Tunable Medium: The Belousov–Zhabotinsky Reaction in an Aerosol OT Microemulsion // Phys. Rev. Lett. — 2001. — V. 87. — 4 p. — 228301. — DOI: 10.1103/PhysRevLett.87.228301. — ads: 2001PhRvL..87v8301V. , .
- Dash waves in a reaction-diffusion system // Phys. Rev. Lett. — 2003. — V. 90. — P. 098301[4 pages]. — DOI: 10.1103/PhysRevLett.90.098301. — ads: 2003PhRvL..90i8301V. , .
- Segmented spiral waves in a reaction-diffusion system // Proc. Natl. Acad. Sci. USA. — 2003. — V. 100. — 14635. — DOI: 10.1073/pnas.2534816100. , .
- Segmented waves from a spatiotemporal transverse wave instability // Phys. Rev. Lett. — 2005. — V. 95. — 038303. , , .
- Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers // Commun. Theor. Phys. — 2008. — V. 49. — P. 174–180. — DOI: 10.1088/0253-6102/49/5/56. — ads: 2008CoTPh..49..174Y. , , , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science