Review of MRI processing techniques and elaboration of a new two-parametric method of moments

 pdf (366K)  / Annotation

List of references:

  1. М. Абрамовиц, И. Стиган. Справочник по специальным функциям. — Москва: Изд. «Наука», 1979.
  2. A. Abdi, et al. On the estimation of the K parameter for the Rice fading distribution // IEEE Commun. Lett. — 2001. — V. 5, no. 3. — P. 92–94. — DOI: 10.1109/4234.913150.
  3. S. Aja-Fernandez, C. Alberola-Lopez, C.-F. Westin. Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach // IEEE Transactions on Image Processing. — 2008. — V. 17, no. 8. — P. 1383–1398. — DOI: 10.1109/TIP.2008.925382. — MathSciNet: MR2516906. — ads: 2008ITIP...17.1383A.
  4. D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation // IEEE Trans. PAMI. — 2002. — V. 24, no. 6. — P. 844–847. — DOI: 10.1109/TPAMI.2002.1008390.
  5. S. Basu, et al. Rician noise removal in diffusion tensor MRI / Medical Image Computing and Computer-Assisted Intervention — MICCAI. — Berlin: Springer-Verlag, 2006. — P. 117–125.
  6. T. R. Benedict, T. T. Soong. The joint estimation of signal and noise from the sum envelope // IEEE Trans. Inf. Theory. — 1967. — V. IT-13, no. 3. — P. 447–454. — DOI: 10.1109/TIT.1967.1054037.
  7. A. Buades, Coll B., J. M. Morel. A review of image denoising algorithms, with a new one // Multiscale Model Simul. — 2005. — V. 4. — P. 490–530. — MathSciNet: MR2162865.
  8. C. F.M. Carobbi, M. Cati. The absolute maximum of the likelihood function of the Rice distribution: existence and uniqueness // IEEE Trans. on Instrumentation and Measurement. — 2008. — V. 57, no. 4. — P. 682–689. — DOI: 10.1109/TIM.2007.913823.
  9. D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis // IEEE Trans. PAMI. — 2002. — V. 24, no. 5. — P. 603–619. — DOI: 10.1109/34.1000236.
  10. I. Delakis, et al. Wavelet based denoising algorithm for images acquired with parallel magnetic resonance imaging (MRI) // Phys. Med. Biol. — 2007. — V. 52. — P. 3741–3751. — DOI: 10.1088/0031-9155/52/13/006.
  11. L. Gang, X. Lei, C. Xuequan. Overview of the Applications of Curvelet Transform in Image Processing // Journal of Computer Reasearch and Development. — 2005. — P. 1331–1337.
  12. S. J. Garnier, G. L. Bilbro. Magnetic resonance image restoration // J. Math. Imag., Vision. — 1995. — V. 5. — P. 7–19. — DOI: 10.1007/BF01250250.
  13. G. Gerig, O. Kubler, R. Kikinis, F. A. Jolesz. Nonlinear anisotropic filtering of MRI data // IEEE Trans. Med. Imag. — 1992. — V. 11. — P. 221–232. — DOI: 10.1109/42.141646.
  14. L. He, I. R. Greenshields. A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images // IEEE Trans Med Imaging. — 2009. — V. 28. — P. 165–172. — DOI: 10.1109/TMI.2008.927338.
  15. Jianwei Ma, G. Plonka. The Curvelet Transform // Signal Processing Magazine, IEEE. — 2010. — V. 27, no. 2. — P. 118–133. — DOI: 10.1109/MSP.2009.935453. — ads: 2010ISPM...27..115J.
  16. C. Koay, et al. A signal transformational framework for breaking the noise floor and its applications in MRI // Journal of Magnetic Resonance. — 2009. — V. 197. — P. 108–119. — DOI: 10.1016/j.jmr.2008.11.015. — ads: 2009JMagR.197..108K.
  17. K. Krissian, S. Aja-Fernandez. Noise driven anisotropic diffusion filtering of MRI // IEEE Trans. Imag. Proc. — 2009. — V. 18. — P. 2265–2274. — DOI: 10.1109/TIP.2009.2025553. — MathSciNet: MR2789238. — ads: 2009ITIP...18.2265K.
  18. M. Lysaker, et al. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time // IEEE Trans. Imag. Proc. — 2003. — V. 12, no. 12. — P. 1579–1590. — DOI: 10.1109/TIP.2003.819229. — ads: 2003ITIP...12.1579L.
  19. J. V. Manjon, et al. Adaptive non local means denoising of MR images with spatially varying noise levels // J. Magn Reson Imaging. — 2010. — V. 31. — P. 192–203. — DOI: 10.1002/jmri.22003.
  20. J. V. Manjon, et al. MRI denoising using non local means // Medical Image Analysis. — 2008. — V. 12. — P. 514–523. — DOI: 10.1016/j.media.2008.02.004.
  21. G. McGibney, M. R. Smith. An unbiased signal-to-noise ratio measure for magnetic resonance images // Med. Phys. — 1993. — V. 20, no. 4. — P. 1077 — 1078. — DOI: 10.1118/1.597004.
  22. R. D. Nowak. Wavelet based Rician noise removal for magnetic resonance images // IEEE Trans. Image Processing. — 1999. — V. 10, no. 8. — P. 1408–1419. — DOI: 10.1109/83.791966. — ads: 1999ITIP....8.1408N.
  23. J.H. Jr. Park. Moments of generalized Rayleigh distribution // Q. Appl. Math. — 1961. — V. 19, no. 1. — P. 45–49. — DOI: 10.1090/qam/119222. — MathSciNet: MR0119222.
  24. P. Perona, J. Malik. Scale-Space and Edge Detection Using Anisotropic Diffusion // IEEE Transactions on Pattern Analysis and Machine Intelligence. — 1990. — V. 12, no. 7. — P. 629–639. — DOI: 10.1109/34.56205.
  25. A. Pizurica, et al. A versatile wavelet domain filtration technique for medical imaging // IEEE Trans. Med. Imaging. — 2003. — V. 22. — P. 323–331.
  26. J. Rajan, B. Jeurissen, M. Verhoye, J. Van Audekerke, J. Sijbers. Maximum likelihood estimation based denoising of magnetic resonance images using restricted local neighborhoods // Physics in Medicine and Biology. — 2011. — V. 56, no. 16. — P. 5221–5234. — DOI: 10.1088/0031-9155/56/16/009. — ads: 2011PMB....56.5221R.
  27. S. O. Rice. Mathematical Analysis of Random Noise // Bell System Technical Journal. — 1945. — V. 24. — P. 46–156. — DOI: 10.1002/j.1538-7305.1945.tb00453.x. — MathSciNet: MR0011918.
  28. P. K. Saha, J. K. Udupa. Scale-based Diffusive Image Filtering Preserving Boundary Sharpness and Fine Structures // IEEE Trans. Med. Imaging. — 2001. — V. 20, no. 11. — P. 1140–1155. — DOI: 10.1109/42.963817.
  29. J. Sijbers, A. J. den Dekker. Maximum Likelihood estimation of signal amplitude and noise variance from MR data // Magn. Reson. Med. — 2004. — V. 51, no. 3. — P. 586 — 594. — DOI: 10.1002/mrm.10728.
  30. J. Sijbers, A. J. den Dekker, P. Scheunders, D. V. Dyck. Maximum-Likelihood Estimation of Rician Distribution Parameters // IEEE Transactions on Medical Imaging. — 1998. — V. 17, no. 3. — P. 357 — 361. — DOI: 10.1109/42.712125.
  31. J.-L. Starck, E. J. Candès, D. L. Donoho. The curvelet transform for image denoising // IEEE Trans. Image Process. — 2002. — V. 11, no. 6. — P. 670–684. — DOI: 10.1109/TIP.2002.1014998. — MathSciNet: MR1929403. — ads: 2002ITIP...11..670S.
  32. K.K. Talukdar, W.D. Lawing. Estimation of the parameters of Rice distribution // J. Acoust. Soc. Amer. — 1991. — V. 89, no. 3. — P. 1193–1197. — DOI: 10.1121/1.400532. — ads: 1991ASAJ...89.1193T.
  33. N.A. Thacker, J.V. Manjon, P.A. Bromiley. A Statistical Interpretation of Non-Local Means // IET Computer Vision. — 2010. — V. 4, no. 3. — P. 162–172. — DOI: 10.1049/iet-cvi.2008.0076. — MathSciNet: MR2761197.
  34. C. Tomasi, R. Manduchi. Bilateral filtering of gray and color images / Proceedings of the Sixth IEEE International Conference on Computer Vision. — 1998. — P. 839–846. — Bombay, India.
  35. N. Wiest-Daessle, et al. Rician noise removal by Non-Local Means filtering for low Signal-to-Noise ration MRI: Applications to DT-MRI / Medical Image Computing and Computer-Assisted Intervention — MICCAI. — Berlin: Springer-Verlag, 2008. — P. 171–179.
  36. J. C. Wood, K. M. Johnson. Wavelet Packet Denoising of Magnetic Resonance Images: Importance of Rician Noise at Low SNR // Magn Reson Med. — 1999. — V. 41, no. 3. — P. 631–635. — DOI: 10.1002/(SICI)1522-2594(199903)41:3<631::AID-MRM29>3.0.CO;2-Q.
  37. T.V. Yakovleva, N. S. Kulberg. Noise and Signal Estimation in MRI: Two-Parametric Analysis of Rice-Distributed Data by Means of the Maximum Likelihood Approach // American Journal of Theoretical and Applied Statistics. — 2013. — V. 2, no. 3. — P. 67–79. — DOI: 10.11648/j.ajtas.20130203.15.
  38. Y. You, M. Kaveh. Fourth order partial differential equations for noise removal // IEEE Trans. Imag. Proc. — 2000. — V. 9(10). — P. 1723–1730. — DOI: 10.1109/83.869184. — MathSciNet: MR1807566. — ads: 2000ITIP....9.1723Y.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"