All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
pdf (2662K)
/ Annotation
List of references:
- Анализ стохастических аттракторов при бифуркации точка покоя – цикл // Автоматика и телемеханика. — 2007. — № 10. — С. 53–69. , .
- Метод квазипотенциала в исследовании локальной устойчивости предельных циклов к случайнымвозм ущениям // Изв. вузов. Прикл. нелинейная динамика. — 2001. — Т. 9, № 6. — С. 104–113. , .
- Бифуркация расщепления стохастических циклов в модели Фицхью-Нагумо // Нелинейная динамика. — 2013. — Т. 9, № 2. — С. 295–307. , , .
- Флуктуации в динамических системах под действием малых случайных возмущений. — М: Наука, 1979. — 424 с. , .
- Стохастические методы в естественных науках. — М: Мир, 1986. — 538 с. .
- Стохастические дифференциальные уравнения и их приложения. — Киев: Наукова думка, 1982. — 612 с. , .
- Первое приближение квазипотенциала в задачах об устойчивости систем со случайными невырожденными возмущениями // Прикл. математика и механика. — 1995. — Т. 59, № 1. — С. 53–63. , .
- Noise-induced resonances in the Hindmarsh–Rose neuronal model // Phys. Rev. E. — 2002. — V. 65. — 6 p. — 041915. — DOI: 10.1103/PhysRevE.65.041915. — ads: 2002PhRvE..65d1915B. , .
- Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh–Rose model // Journal of mathematical neuroscience. — 2011. — V. 1, no. 6. — 22 p. — MathSciNet: MR2827413. , .
- Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique // Phys. Rev. E. — 2011. — V. 83, no. 6. — 8 p. — 061109. — DOI: 10.1103/PhysRevE.83.061109. — ads: 2011PhRvE..83f1109B. , .
- Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect // Chaos. — 2011. — V. 21, no. 4. — 4 p. — 047514. — DOI: 10.1063/1.3647316. — ads: 2011Chaos..21d7514B. , .
- Sensitivity and chaos control for the forced nonlinear oscillations // Chaos, Solitons and Fractals. — 2005. — no. 26. — P. 1437–1451. — DOI: 10.1016/j.chaos.2005.03.029. — MathSciNet: MR2149327. — ads: 2005CSF....26.1437B. , .
- Stochastic sensitivity of 3D-cycles // Mathematics and Computers in Simulation. — 2004. — V. 66, no. 1. — P. 55–67. — DOI: 10.1016/j.matcom.2004.02.021. — MathSciNet: MR2064727. , .
- Noise-induced oscillation bistability and transition to chaos in FitzHugh-Nagumo model // Fluctuation and noise letters. — 2014. — V. 13, no. 1. — 16 p. — 1450004. — DOI: 10.1142/S0219477514500047. , , .
- Large deviations techniques and applications. — Boston: Jones and Bartlett Publishers, 1995. — 346 p. — MathSciNet: MR1202429. , .
- Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster // Chaos. — 2013. — V. 23, no. 4. — 13 p. — 046106. — DOI: 10.1063/1.4827026. — MathSciNet: MR3389775. — ads: 2013Chaos..23d6106D. , , .
- Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. — 1961. — no. 1. — P. 445–466. — DOI: 10.1016/S0006-3495(61)86902-6. .
- Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker // Neuroreport. — 2002. — V. 13, no. 13. — P. 1657–1660. — DOI: 10.1097/00001756-200209160-00018. , , , , .
- A model of neuronal bursting using three coupled first order differential equations // Proc R Soc Lond B Biol Sci. — 1984. — V. 221, no. 1222. — P. 87–102. — DOI: 10.1098/rspb.1984.0024. — ads: 1984RSPSB.221...87H. , .
- The local electric changes associated with repetitive action in a non-medullated axon // J Physiol. — 1948. — V. 107, no. 2. — P. 165–181. — DOI: 10.1113/jphysiol.1948.sp004260. .
- Dynamical phases of the Hindmarsh–Rose neuronal model: Studies of the transition from bursting to spiking chaos // Chaos. — 2007. — V. 17, no. 4. — 11 p. — 043128. — DOI: 10.1063/1.2818153. — MathSciNet: MR2380043. — ads: 2007Chaos..17d3128I. , , , .
- Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. — Cambridge: MIT Press, 2007. — 521 p. — MathSciNet: MR2263523. .
- Neural Excitability, Spiking, and Bursting // Int. J. Bifurcation Chaos. — 2000. — V. 10, no. 6. — P. 1171–1266. — DOI: 10.1142/S0218127400000840. — MathSciNet: MR1779667. .
- Effect of noise and perturbations on limit cycle systems // Phys. D. — 1991. — V. 50, no. 3. — P. 311–320. — DOI: 10.1016/0167-2789(91)90001-P. — MathSciNet: MR1119029. — ads: 1991ZPhyB..85..311K. , .
- Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance // Phys. Rev. E. — 1999. — V. 60, no. 6. — P. 7270–7276. — DOI: 10.1103/PhysRevE.60.7270. — ads: 1999PhRvE..60.7270L. , .
- Effects of noise in excitable systems // Physics Reports. — 2004. — V. 392. — P. 321–424. — DOI: 10.1016/j.physrep.2003.10.015. — ads: 2004PhR...392..321L. , , , .
- Codimension-Two Bifurcation Analysis in Hindmarsh–Rose Model with Two Parameters // Chin. Phys. Rev. — 2005. — V. 22, no. 6. — P. 1325–1328. — ads: 2005ChPhL..22.1318L. , .
- Autonomous stochastic resonance in bursting neurons // Phys. Rev. E. — 1997. — V. 55, no. 1. — P. 868–876. — DOI: 10.1103/PhysRevE.55.868. — ads: 1997PhRvE..55..868L. .
- Multivalued stochastic resonance in a model of an excitable neuron // Phys. Lett. A. — 2000. — V. 271, no. 3. — P. 191–197. — DOI: 10.1016/S0375-9601(00)00356-X. — MathSciNet: MR1767488. — ads: 2000PhLA..271..191O. , .
- Coherence resonance in a noise-driven excitable system // Phys. Rev. Lett. — 1997. — V. 78, no. 5. — P. 775–778. — DOI: 10.1103/PhysRevLett.78.775. — MathSciNet: MR1429571. — ads: 1997PhRvL..78..775P. , .
- Resonances and Noise in a Stochastic Hindmarsh–Rose Model of Thalamic Neurons // Bull Math Biol. — 2003. — V. 65, no. 4. — P. 641–663. — DOI: 10.1016/S0092-8240(03)00026-0. , , .
- Methods of the qualitative theory for the Hindmarsh–Rose Model: A case study – A Tutorial // Int. J. Bifurcation Chaos. — 2008. — V. 18, no. 8. — P. 2141–2168. — DOI: 10.1142/S0218127408021634. — MathSciNet: MR2463856. , .
- The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations // Chaos. — 2008. — V. 18, no. 3. — 10 p. — 033128. — DOI: 10.1063/1.2975967. — MathSciNet: MR2464307. — ads: 2008Chaos..18c3128S. , , .
- Dynamical Behaviors of Periodically Forced Hindmarsh–Rose Neural Model: The Role of Excitability and ‘Intrinsic’ Stochastic Resonance // J. Phys. Soc. Jpn. — 2000. — V. 69, no. 1. — P. 276–283. — DOI: 10.1143/JPSJ.69.276. — ads: 2000JPSJ...69..276W. , , .
- Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle // Physica D. — 1993. — V. 63, no. 1–4. — P. 263–274. — DOI: 10.1016/0167-2789(93)90286-A. — MathSciNet: MR1207426. — ads: 1993PhyD...62..263W. .
- Coherence resonance and synchronization of Hindmarsh–Rose neurons with noise // Chinese Physics. — 2005. — V. 14, no. 6. — P. 1088–1094. — DOI: 10.1088/1009-1963/14/6/006. , .
- SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation // Chin. Phys. Lett. — 2011. — V. 28, no. 9. — 3 p. — 090201. — DOI: 10.1088/0256-307X/28/9/090201. , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science