Detection of promoter and non-promoter E.coli sequences by analysis of their electrostatic profiles

 pdf (209K)  / Annotation

List of references:

  1. В. Б. Журкин, В. И. Полтев, В. Л. Флорентьев. Атом-атомные потенциальные функции для конформационных расчетов нуклеиновых кислот // Мол. биол. — 1980. — Т. 14, № 5. — С. 1116–1130.
  2. С. Г. Камзолова, А. А. Осипов, П. М. Бескаравайный и др. Регуляция активности промоторной ДНК через электростатические взаимодействия с РНК-полимеразой // Биофизика. — 2007. — Т. 52, № 2. — С. 228–236.
  3. С. Г. Камзолова, А. А. Сорокин, А. А. Осипов, П. М. Бескаравайный. Электростатическая карта генома бактериофага Т7. 1. Сравнительный анализ электростатических свойств σ70- специфических промоторов Т7 ДНК, взаимодействующих с РНК-полимеразой E.coli // Биофизика. — 2009. — Т. 54, № 6. — С. 975–983.
  4. С. С. Киселев, О. Н. Озолинь. Структурообразующие модули как индикаторыпромоторной ДНК в бактериальных геномах // Математическая биология и биоинформатика. — 2011. — Т. Февраль. — С. 39–52.
  5. А. А. Сорокин. Сравнение одномерных профилей электростатического потенциала ДНК, полученных методом решения уравнения Пуассона–Больцмана, с результатами кулоновского подхода. — Неопубликованные данные.
  6. M. M. Barker, T. Gaal, R. L. Gourse. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP // J. Mol. Biol. — 2001a. — V. 305, no. 4. — P. 689–702. — DOI: 10.1006/jmbi.2000.4328.
  7. M. M. Barker, T. Gaal, C. A. Josaitis, R. L. Gourse. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro // J. Mol. Biol. — 2001b. — V. 305, no. 4. — P. 673–688. — DOI: 10.1006/jmbi.2000.4327.
  8. C. J. Benham. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions // J. Mol. Biol. — 1996. — V. 255, no. 3. — P. 425–434. — DOI: 10.1006/jmbi.1996.0035.
  9. C. J. Benham, T. Kohwi-Shigematsu, J. Bode. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions // J. Mol. Biol. — 1997. — V. 274, no. 2. — P. 181–196. — DOI: 10.1006/jmbi.1997.1385.
  10. S. Borukhov, E. Nudler. RNA polymerase: the vehicle of transcription // Trends Microbiol. — 2008. — V. 16, no. 3. — P. 126–134. — DOI: 10.1016/j.tim.2007.12.006.
  11. BPROM. — Prediction of bacterial promoters. — http://linux1.softberry.com/berry.phtml? topic=bprom&group=programs&subgroup=gfindb.
  12. A. Brok-Volchanski, I. Masulis, K. Shavkunov, et al. Predicting sRNA genes in the genome of E. coli by the promoter-search algorithm PlatProm / Bioinformatics of Genome Regulation and Structure II. — 2006. — P. 11–20.
  13. G. E. Crooks. WebLogo: A Sequence Logo Generator // Genome Res. — 2004. — V. 14, no. 6. — P. 1188–1190. — DOI: 10.1101/gr.849004.
  14. H. R. Drew, A. A. Travers. DNA structural variations in the E. coli tyrT promoter // Cell. — 1984. — V. 37, no. 2. — P. 491–502. — DOI: 10.1016/0092-8674(84)90379-9.
  15. S. Gama-Castro, H. Salgado, M. Peralta-Gil, et al. RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) // Nucleic Acids Res. — 2011. — V. 39, no. Database issue. — P. D98–105. — DOI: 10.1093/nar/gkq1110.
  16. C. A. Hirvonen, W. Ross, C. E. Wozniak, et al. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli // J. Bacteriol. — 2001. — V. 183, no. 21. — P. 6305–6314. — DOI: 10.1128/JB.183.21.6305-6314.2001.
  17. I. G. Hook-Barnard, D. M. Hinton. The promoter spacer influences transcription initiation via sigma70 region 1.1 of Escherichia coli RNA polymerase // Proceedings of the National Academy of Sciences. — 2009. — V. 106, no. 3. — P. 737–742. — DOI: 10.1073/pnas.0808133106. — ads: 2009PNAS..106..737H.
  18. B. Jayaram, K. A. Sharp, B. Honig. The electrostatic potential of B-DNA // Biopolymers. — 1989. — V. 28, no. 5. — P. 975–993. — DOI: 10.1002/bip.360280506.
  19. L. J. Jensen, C. Friis, D. W. Ussery. Three views of microbial genomes // Res Microbiol. — 1999. — V. 150, no. 9-10. — P. 773–777. — DOI: 10.1016/S0923-2508(99)00116-3.
  20. D. Jost, R. Everaers. Genome wide application of DNA melting analysis // J. Phys. Condens. Matter. — 2009. — V. 21, no. 3. — P. 034108. — DOI: 10.1088/0953-8984/21/3/034108.
  21. S. G. Kamzolova, A. A. Sorokin, T. D. Dzhelyadin, et al. Electrostatic potentials of E.coli genome DNA // J. Biomol. Struct. Dyn. — 2005. — V. 23, no. 3. — P. 341–345.
  22. H. Kiryu, T. Oshima, K. Asai. Extracting relations between promoter sequences and their strengths from microarray data // Bioinformatics. — 2005. — V. 21, no. 7. — P. 1062–1068. — DOI: 10.1093/bioinformatics/bti094.
  23. P. Koehl. Electrostatics calculations: latest methodological advances // Current opinion in structural biology. — 2006. — V. 16, no. 2. — P. 142–151. — DOI: 10.1016/j.sbi.2006.03.001.
  24. K.-A. Le Cao, S. Boitard, P. Besse. Sparse PLS Discriminant Analysis: biologically relevant feature selection and graphical displays for multiclass problems // BMC Bioinformatics. — 2011. — V. 12, no. 1. — P. 253.
  25. T. Lozi´nski, K. L. Wierzchowski. Effect of reversed orientation and length of An.Tn DNA bending sequences in the −35 and spacer domains of a consensus-like Escherichia coli promoter on its strength in vivo and gross structure of the open complex in vitro // Acta biochimica Polonica. — 1996. — V. 43, no. 1. — P. 265–279.
  26. A. Mendoza-Vargas, L. Olvera, M. Olvera, et al. Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli // PLoS ONE. — 2009. — V. 4, no. 10. — P. e7526. — DOI: 10.1371/journal.pone.0007526. — ads: 2009PLoSO...4.7526M.
  27. B.-H. Mevik, R. Wehrens, K. H. Liland. pls: Partial Least Squares and Principal Component regression / R package version 2.3-0. — 2011.
  28. V. K. Misra, J. L. Hecht, A. S. Yang, B. Honig. Electrostatic Contributions to the Binding Free Energy of the [lambda] cI Repressor to DNA // Biophys J. — 1998. — V. 75, no. 5. — P. 2262–2273. — DOI: 10.1016/S0006-3495(98)77671-4.
  29. V. V. Panyukov, S. S. Kiselev, K. S. Shavkunov, et al. Mixed promoter islands as genomic regions with specific structural and functional properties // Mathematical Biology and Bioinformatics. — 2013. — V. 8, no. 2. — P. 432–448. — DOI: 10.17537/2013.8.432.
  30. R. V. Polozov, T. R. Dzhelyadin, A. A. Sorokin, et al. Electrostatic potentials of DNA. Comparative analysis of promoter and nonpromoter nucleotide sequences // J. Biomol. Struct. Dyn. — 1999. — V. 16, no. 6. — P. 1135–1143. — DOI: 10.1080/07391102.1999.10508322.
  31. R. V. Polozov, V. S. Sivozhelezov, V. V. Ivanov, Y. B. Melnikov. On a classification of E. coli promoters according to their electrostatic potentials // Physics of Particles and Nuclei Letters. — 2005. — V. 2, no. 4. — P. 241–246.
  32. M. G. Reese. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome // Comput. Chem. — 2001. — V. 26, no. 1. — P. 51–56. — DOI: 10.1016/S0097-8485(01)00099-7.
  33. R. Rohs, S. M. West, P. Liu, B. Honig. Nuance in the double-helix and its role in protein–DNA recognition // Current opinion in structural biology. — 2009. — V. 19, no. 2. — P. 171–177. — DOI: 10.1016/j.sbi.2009.03.002.
  34. C. S. Schaumburg. Mutational analysis of the Chlamydia trachomatis dnaK promoter defines the optimal −35 promoter element // Nucleic Acids Res. — 2003. — V. 31, no. 2. — P. 551–555. — DOI: 10.1093/nar/gkg150.
  35. K. S. Shavkunov, I. S. Masulis, M. N. Tutukina, et al. Gains and unexpected lessons from genome-scale promoter mapping // Nucleic Acids Res. — 2009. — V. 37, no. 15. — P. 4919–4931. — DOI: 10.1093/nar/gkp490.
  36. V. Solovyev, A. Salamov. Automatic annotation of microbial genomes and metagenomic sequences / Metagenomics and its applications in agriculture, biomedicine and environmental studies. — 2011. — P. 61–78.
  37. A. A. Sorokin, A. A. Osypov, T. R. Dzhelyadin, et al. Electrostatic properties of promoter recognized by E. coli RNA polymerase Esigma70 // Journal of Bioinformatics and Computational Biology. — 2006. — V. 4, no. 2. — P. 455–467. — DOI: 10.1142/S0219720006002077.
  38. A. A. Sorokin, T. R. Dzhelyadin, E. A. Temlyakova. RelDNA: DNA electrostatics in R. — http://reldna.github.io.
  39. A. S. Stephanou, G. A. Roberts, M. R. Tock, et al. A mutational analysis of DNA mimicry by ocr, the gene 0.3 antirestriction protein of bacteriophage T7 // Biochem Biophys Res Commun. — 2009. — V. 378, no. 1. — P. 129–132. — DOI: 10.1016/j.bbrc.2008.11.014.
  40. A. A. Travers. DNA conformation and protein binding / Annual review of biochemistry. — 1989.
  41. P. A. Tsonis, B. Dwivedi. Molecular mimicry: structural camouflage of proteins and nucleic acids // Biochim Biophys Acta. — 2008. — V. 1783, no. 2. — P. 177–187. — DOI: 10.1016/j.bbamcr.2007.11.001.
  42. M. N. Tutukina, K. S. Shavkunov, I. S. Masulis, O. N. Ozoline. Intragenic promotor-like sites in the genome of Escherichia coli discovery and functional implication // Journal of Bioinformatics and Computational Biology. — 2007. — V. 5, no. 2B. — P. 549–560. — DOI: 10.1142/S0219720007002801.
  43. H. Wang, C. J. Benham. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress // BMC Bioinformatics. — 2006. — V. 7. — P. 248. — ads: 2006IAUS..230..248W.
  44. J. Weindl, Z. Dawy, P. Hanus, et al. Modeling promoter search by E. coli RNA polymerase: Onedimensional diffusion in a sequence-dependent energy landscape // J. Theor. Biol. — 2009. — V. 259, no. 3. — P. 628–634. — DOI: 10.1016/j.jtbi.2009.05.006.
  45. E. Yeramian. Genes and the physics of the DNA double-helix // Gene. — 2000. — V. 255, no. 2. — P. 139–150. — DOI: 10.1016/S0378-1119(00)00301-2.
  46. Y. Yuzenkova, V. R. Tadigotla, K. Severinov, N. Zenkin. A new basal promoter element recognized by RNA polymerase core enzyme // The EMBO Journal. — 2011. — V. 30, no. 18. — P. 3766–3775. — DOI: 10.1038/emboj.2011.252.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"