All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Parameter estimation methods for random point fields with local interactions
pdf (126K)
/ Annotation
List of references:
- Математическая статистика. Оценка параметров. Проверка гипотез. — М: Наука, 1984. — 472 с. .
- Статистический анализ горизонтальной структуры древостоя / Моделирование биогеоценотических процессов. — М: Наука, 1981. — С. 119–135. , .
- Статистический анализ пространственных структур. Двоичная случайная переменная на правильной решетке / Экомодель-2. Материалы по математическому обеспечению ЭВМ. — Пущино: ОНТИ НЦБИ, 1979. — С. 1–48. , .
- Гиббсовские случайные поля. Метод кластерных разложений. — М: Наука, Глав. ред. физ.-мат. лит-ры, 1985. — 356 с. , .
- Предельное распределение Гиббса // Функциональный анализ и его приложения. — 1967. — Т. 1, № 2. — С. 60–73. .
- Time-invariance estimating equations // Bernoulli. — 2000. — V. 6. — P. 783–808. — DOI: 10.2307/3318756. — MathSciNet: MR1791902. .
- Practical maximum pseudolikelihood for spatial point patterns (with discussion) // Australian and New Zealand Journal of Statistics. — 2000. — V. 42. — P. 283–322. — DOI: 10.1111/1467-842X.00128. — MathSciNet: MR1794056. , .
- Case Studies in Spatial Point Process Modeling // Lect. Notes Statist. — N.Y: Springer, 2006. — V. 185. — 307 p. — DOI: 10.1007/0-387-31144-0. — MathSciNet: MR2229141. , , , , .
- Logistic regression for spatial Gibbs point processes // Biometrika. — 2014. — V. 101, no. 2. — P. 377–392. — DOI: 10.1093/biomet/ast060. — MathSciNet: MR3215354. , , , .
- The statistical analysis of spatial pattern // Advances in Applied Probability. — 1974. — V. 6, no. 2. — P. 336–358. — DOI: 10.2307/1426297. — MathSciNet: MR0343336. .
- Spatial interaction and the statistical analysis of lattice systems // Journal of the Royal Statistical Society. Series B. — 1974. — V. 36, no. 2. — P. 192–236. — MathSciNet: MR0373208. .
- Statistical analysis of non-lattice data // Statistician. — 1975. — V. 24, no. 3. — P. 179–195. — DOI: 10.2307/2987782. .
- Estimation of parameterized pair potentials of marked and non-marked Gibbsian point processes // Elektron. Informationsverarb. Kybernet. — 1984. — V. 20. — P. 270–278. — MathSciNet: MR0760146. .
- Simulation procedures and likelihhod inference for spatial point processes // Scand. J. Statist.. — 1994. — V. 21. — P. 359–373. — MathSciNet: MR1310082. , .
- A connection between estimation and simulation methods of spatial point processes / Seminaire European de Statistique on “Stochastic Geometry, Theory and Application”. — 1996. — Toulouse. — 13-18 May, 1996. .
- Time-invariance estimators for spatial point processes: performance and implementation / Abstracts of a conference “Stochastic Geometry and its Application”. — 2005. — Bern. — 3–7 October, 2005. , .
- Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions // Ecological Modelling. — 2009. — V. 220, no. 9–10. — P. 1232–1240. — DOI: 10.1016/j.ecolmodel.2009.02.021. , .
- Monte Carlo sampling methods using Markov chains and their applications // Biometrika. — 1970. — V. 57. — P. 97–109. — DOI: 10.1093/biomet/57.1.97. — MathSciNet: MR3363437. .
- On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes // Ann. Inst. Statist. Math. — 1994. — V. 46. — P. 475–486. — MathSciNet: MR1309718. , .
- Statistical Inference and Simulation for Spatial Point Processes. — Boca Raton: Chapman and Hall/CRC, 2004. — 301 p. — MathSciNet: MR2004226. , .
- Integral and differencial characterizations of the Gibbs process // Math. Nach. — 1979. — V. 88. — P. 105–115. — DOI: 10.1002/mana.19790880109. — MathSciNet: MR0543396. , .
- Stochastic Geometry and its Applications. — Chichester: John Wiley, 1995. — 2nd ed. — MathSciNet: MR0895588. , , .
- A model for clustering // Biometrika. — 1975. — V. 62, no. 2. — P. 467–475. — DOI: 10.1093/biomet/62.2.467. — MathSciNet: MR0383493. .
- Image analysis, random fields and Markov chain Monte Carlo methods: a mathematical introduction. — Springer Science & Business Media, 2012. — MathSciNet: MR1950762. .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science