Modeling of plankton community state with density-dependent death and spatial activity of zooplankton

 pdf (369K)  / Annotation

List of references:

  1. А. Д. Базыкин. Биофизика взаимодействующих популяций. — М: Наука, 1985.
    • A. D. Bazykin. Mathematical biophysics of interacting populations. — M: Nauka, 1985. — in Russian. — MathSciNet: MR0801544. — zbMATH: Zbl 0605.92015.
  2. Ф. С. Березовская, Г. П. Карев. Бифуркации бегущих волн в популяционных моделях с таксисом // Успехи физических наук. 1999. — Т. 169, № 9. — С. 1011–1024.
    • F. S. Berezovskaya, G. P. Karev. Bifurkacii begushchih voln v populyacionnyh modelyah s taksisom // Uspekhi fizicheskih nauk. 1999. — V. 169, no. 9. — P. 1011–1024. — in Russian. — DOI: 10.3367/UFNr.0169.199909d.1011. — Math-Net: Mi eng/ufn1659.
    • F. S. Berezovskaya, G. P. Karev. Bifurcations of travelling waves in population taxis models // Phys. Usp. 1999. — V. 42. — P. 917–929. — DOI: 10.1070/PU1999v042n09ABEH000564. — MathSciNet: MR1773207.
  3. В. А. Васильев, Ю. М. Романовский, В. Г. Яхно. Автоволновые процессы. — М: Наука, 1987.
    • V. A. Vasilyev, Yu. M. Romanovskii, V. G. Yakhno. Avtovolnovye processy. — M: Nauka, 1987. — in Russian.
  4. В. Вольтерра. Математическая теория борьбы за существование. — М: Наука, 1976.
    • V. Volterra. Variations and fluctuations of the number of individuals in animal species living together. — М: Nauka, 1976. — in Russian.
  5. Е. Е. Гиричева. Динамические эффекты в системе «хищник–жертва» на примере планктонного сообщества // Информатика и системы управления. 2014. — № 4(42). — С. 31–40.
    • E. E. Giricheva. Dinamicheskie ehffekty v sisteme “hishchnik–zhertva” na primere planktonnogo soobshchestva // Informatika i sistemy upravleniya. 2014. — V. 4, no. 42. — P. 31–40. — in Russian.
  6. Г. Р. Иваницкий, А. Б. Медвинский, М. A. Цыганов. От беспорядка к упорядоченности на примере движения микроорганизма // Успехи физических наук. 1991. — Т. 161, № 4. — С. 13–71.
    • G. R. Ivanitskii, A. B. Medvinskii, M. A. Tsyganov. Ot besporyadka k uporyadochennosti na primere dvizheniya mikroorganizma // Uspekhi fizicheskih nauk. 1991. — V. 161, no. 4. — P. 13–71. — in Russian. — DOI: 10.3367/UFNr.0161.199104b.0013.
    • G. R. Ivanitskii, A. B. Medvinskii, M. A. Tsyganov. From disorder to order as applied to the movement of micro-organisms // Sov. Phys. Usp. 1991. — V. 34, no. 4. — P. 289–316. — DOI: 10.1070/PU1991v034n04ABEH002362.
  7. А. Н. Колмогоров. Качественное изучение математических моделей популяций // Проблемы кибернетики. — М: Наука, 1972. — № 25. — С. 100–106. — zbMATH: Zbl 0246.42008.
    • Kolmogorov A. N.. . Kachestvennoe izuchenie matematicheskih modelej populyacij // Problemy kibernetiki. — М: Nauka, 1972. — V. 25. — P. 100–106. — in Russian.
  8. А. Б. Медвинский, С. В. Петровский, И. А. Тихонова, Д. А. Тихонов, Б. Л. Ли, Э. Вентурино, Х. Мальхё, Г. Р. Иваницкий. Формирование пространственно-временных структур, фракталы и хаос в концептуальных экологических моделях на примере динамики взаимодействующих популяций планктона и рыбы // Успехи физических наук. 2002. — Т. 172. — С. 31–66.
    • A. B. Medvinskii, S. V. Petrovskii, I. A. Tikhonova, D. A. Tikhonov, B. L. Li, E. Venturino, H. Malchow, G. R. Ivanitskii. Formirovanie prostranstvenno vremennyh struktur fraktaly i haos v konceptualnyh ehkologicheskih modelyah na primere dinamiki vzaimodejstvuyushchih populyacij planktona i ryby // Uspekhi fizicheskih nauk. 2002. — V. 172. — P. 31–36. — in Russian. — DOI: 10.3367/UFNr.0172.200201b.0031. — Math-Net: Mi eng/ufn1972.
    • A. B. Medvinskii, S. V. Petrovskii, I. A. Tikhonova, D. A. Tikhonov, B. L. Li, E. Venturino, H. Malchow, G. R. Ivanitskii. Spatiotemporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics // Phys. Usp. 2002. — V. 45, no. 1. — P. 27–57.
  9. Р. В. Озмидов. Диффузия примесей в океане. — Л: Гидрометеоиздат, 1986.
    • R. V. Ozmidov. Diffuziya primesej v okeane. — L: Gidrometeoizdat, 1986. — in Russian.
  10. Г. Ю. Ризниченко, А. Б. Рубин. Математические модели биологических продукционных процессов. — М: Изд. МГУ, 1993.
    • G. Yu. Riznichenko, Rubin A. B.. . Matematicheskie modeli biologicheskih produkcionnyh processov. — M: MGU, 1993. — in Russian.
  11. Ю. М. Свирежев, Д. О. Логофет. Устойчивость биологических сообществ. — М: Наука, 1978.
    • Yu. M. Svirezhev, D. O. Logofet. Ustojchivost biologicheskih soobshchestv. — M: Nauka, 1978. — in Russian. — MathSciNet: MR0537932.
    • Yu. M. Svirezhev, D. O. Logofet. Stability of biological community. — M: Mir, 1983. — MathSciNet: MR0723326.
  12. G. Charria, et al. Importance of Dissolved Organic Nitrogen in the North Atlantic Ocean in sustaining primary production: a 3D modeling approach // Biogeosciences. 2008. — V. 5. — P. 1437–1455. — DOI: 10.5194/bg-5-1437-2008.
  13. P. L. Chow, W. C. Tam. Periodic and traveling wave solutions to Volterra-Lotka equations with Diffusion // Bull. Math. Biology. 1976. — V. 38(6). — P. 643–658. — DOI: 10.1007/BF02458639. — MathSciNet: MR0481538. — zbMATH: Zbl 0345.92007.
  14. S. R. Dunbar. Traveling wave solutions of diffusive Lotka–Volterra equations // J. Math. Biol. 1983. — V. 17. — P. 11–32. — DOI: 10.1007/BF00276112. — MathSciNet: MR0707221. — zbMATH: Zbl 0509.92024.
  15. S. Jang, J. Baglama, Seshaiyer P.. . Droop models of nutrient-plankton interaction with intratrophic predation // Appl. Math. Comput. 2005. — V. 169, no. 2. — P. 1106–1128. — MathSciNet: MR2174709. — zbMATH: Zbl 1074.92039.
  16. M. P. Hassell. Arthropod Predator–Prey Systems. — New Jersey: Princeton University Press, 1978. — MathSciNet: MR0508052. — zbMATH: Zbl 0429.92018.
  17. R. S. Hayward, D. N. Gallup. Feeding, filtering and assimilation in Daphnia schoedleri as affected by environmental conditions // Arch Hydrobiology. 1976. — V. 77. — P. 139–163.
  18. J. C. Helgen. Feeding rate inhibition in crowded Daphnia pulex // Hydrobiologia. 1987. — V. 154. — P. 113–119. — DOI: 10.1007/BF00026835.
  19. D. Horstmann. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences // i. Jahresbericht DMV. 2003. — V. 105(3). — P. 103–165. — MathSciNet: MR2013508. — zbMATH: Zbl 1071.35001.
  20. P. Kareiva, G. Odell. Swarms of predators exhibit “preytaxis” if individual predators use arearestricted search // American Naturalist. 1987. — V. 130. — P. 233–270. — DOI: 10.1086/284707.
  21. E. F. Keller, L. A. Segel. Initiation of slime mold aggregation viewed as an instability // J. Theoret. Biology. 1970. — V. 26. — P. 399–415. — DOI: 10.1016/0022-5193(70)90092-5. — zbMATH: Zbl 1170.92306.
  22. C. Kohlmeier, W. Ebenhoh. The stabilizing role of cannibalism in a predator-prey system // Bull. Math. Biol., . 1995. — V. 57. — P. 401–411. — DOI: 10.1007/BF02460632. — zbMATH: Zbl 0814.92016.
  23. W. Lampert, J. Grey. Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study // Hydrobiologia. 2003. — V. 500. — P. 95–101. — DOI: 10.1023/A:1024644815548.
  24. J. M. Lee, T. Hillen, M. A. Lewis. Pattern formation in prey-taxis systems // Journal of Biological Dynamics. 2009. — V. 3, no. 6. — P. 551–573. — DOI: 10.1080/17513750802716112. — MathSciNet: MR2573966. — zbMATH: Zbl 1315.92064.
  25. S. A. Levin, L. A. Segel. Hypothesis for origin of plankton patchiness // Nature. 1976. — V. 259. — P. 659. — DOI: 10.1038/259659a0.
  26. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics // Proc. R. Soc. Lond. B. 1993. — V. 251. — P. 103–109. — DOI: 10.1098/rspb.1993.0015.
  27. M. R. Owen, M. A. Lewis. How predation can slow, stop or reverse a prey invasion // Bull. Math. Biol. 2001. — V. 63. — P. 655–684. — DOI: 10.1006/bulm.2001.0239. — MathSciNet: MR3363426. — zbMATH: Zbl 1323.92181.
  28. S. V. Petrovskii, H. Malchow. A minimal model of pattern formation in a prey–predator system // Math. Comput. Model. 1999. — V. 29. — P. 49–63. — DOI: 10.1016/S0895-7177(99)00070-9. — MathSciNet: MR1695498. — zbMATH: Zbl 0990.92040.
  29. S. V. Petrovskii, H. Malchow. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics // Theor. Popul. Biol. 2001. — V. 59. — P. 157–174. — DOI: 10.1006/tpbi.2000.1509. — zbMATH: Zbl 1035.92046.
  30. J. Pitchford, J. Brindley. Intratrophic predation in simple predator-prey models // Bull. Math. Biol. 1998. — V. 60. — P. 937–953. — DOI: 10.1006/bulm.1998.0053. — zbMATH: Zbl 0914.92018.
  31. G. A. Polis. The evolution and dynamics of intratrophic predation // Ann. Rev. Ecol. Syst. 1981. — V. 12. — P. 225–251. — DOI: 10.1146/annurev.es.12.110181.001301.
  32. S. Roy, et al. Sequential variations of phytoplankton growth and mortality in an NPZ model: A remotesensing-based assessment // Journal of Marine Systems. 2012. — V. 92. — P. 16–29. — DOI: 10.1016/j.jmarsys.2011.10.001.
  33. Sh. Ruan, A. Ardito, P. Ricciardi, D. L. DeAngelis. Coexistence in competition models with densitydependent mortality // C. R. Biologies. 2007. — V. 330. — P. 845–854. — DOI: 10.1016/j.crvi.2007.10.004.
  34. L. F. Segel, J. L. Jackson. Dissipative structure. An explanation and an ecological example // J. Theor. Biol. 1972. — V. 37. — P. 345–359.
  35. M. Scheffer. Fish and nutrients interplay determines algal biomass: a minimal model / M. Scheffer // OIKOS. 1991. — V. 62. — P. 271–282. — DOI: 10.2307/3545491.
  36. J. H. Steele, E. W. Henderson. A simple model for plankton patchiness // J. Plankton Res. 1992. — V. 14. — P. 1397–1403. — DOI: 10.1093/plankt/14.10.1397.
  37. J. H. Steele, E. W. Henderson. The role of predation in plankton models // J. Plankton Res. 1992. — V. 14. — P. 157–172. — DOI: 10.1093/plankt/14.1.157.
  38. J. H. Steele, E. W. Henderson. Predation control of plankton demography // ICES J. Marine Sci. 1995. — V. 52. — P. 565–573. — DOI: 10.1016/1054-3139(95)80071-9.
  39. I. J. Totterdell. An annotated bibliography of marine biological models / Towards a Model of Ocean Biogeochemical Processes. — Berlin: Springer–Verlag, 1993. — P. 317–339. — Evans G. T., Fasham M. J. R. (Eds.). — MathSciNet: MR0687348.
  40. P. Turchin. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. — Massachusettsz: Sinauer Associates, Sunderland, 1998.
  41. A. M. Turing. The chemical basis of the morphogenesis // Phil. Trans. R. Soc. London B. 1952. — V. 237. — P. 37–71. — DOI: 10.1098/rstb.1952.0012. — MathSciNet: MR3363444.
  42. P. J. Wangersky. Lotka–Volterra population models // Ann. Rev. Ecol. Syst. 1978. — V. 9. — P. 189–218. — DOI: 10.1146/annurev.es.09.110178.001201.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"