Research and reduction of mathematical model of chemical reaction by Sobol’ method

 pdf (230K)  / Annotation

List of references:

  1. Л. Ф. Нурисламова, И. М. Губайдуллин. Редукция детальных схем химических превращений окислительных реакций формальдегида и водорода на основании результатов анализа чувствительности математической модели // Вычислительные методы и программирование. 2014. — Т. 15, № 14. — С. 685–696.
    • L. F. Nurislamova, I. M. Gubaydullin. Reduction of detailed schemes of chemical reactions of formaldehyde and hydrogen oxidation on based on the results of the sensitivity analysis of the mathematical model // Vychislitel’nye metody i programmirovanie. 2014. — V. 15, no. 14. — P. 685–696.
  2. Л. Ф. Нурисламова, И. М. Губайдуллин. Методика получения редуцированной математической модели химической реакции // Системы управления и информационные технологии. 2014. — Т. 3, № 57. — С. 266–271.
    • L. F. Nurislamova, I. M. Gubaydullin. The method of obtaining the reduced mathematical model of the chemical reaction // Sistemy upravleniya i informatsionnye tekhnologii. 2014. — V. 3, no. 57. — P. 266–271.
  3. Л. С. Полак, М. Я. Гольденберг, А. А. Левицкий. Вычислительные методы в химической кинетике. — М: Наука, 1985. — 280 с.
    • L. S. Polak, M. Ya. Gol’denberg, A. A. Levitskiy. Computational methods in chemical kinetics. — M: Nauka, 1985. — 280 p.
  4. Е. Н. Розенвассер, Р. М. Юсупов. Чувствительность систем автоматического управления. — М: Наука, 1981. — 464 с.
    • E. N. Rozenvasser, R. M. Yusupov. The sensitivity of the automatic control systems. — M: Nauka, 1981. — 464 p. — MathSciNet: MR0639902.
  5. М. Г. Слинько. Основы и принципы математического моделирования каталитических процессов. — Новосибирск: Наука, 2004. — 488 с.
    • M. G. Slin’ko. Fundamentals and principles of mathematical modeling of catalytic processes. — Novosibirsk: Nauka, 2004. — 488 p.
  6. И. М. Соболь. Равномерно распределенные последовательности с дополнительным свойством равномерности // Журнал вычислительной математики и математической физики. 1976. — Т. 16, № 5. — С. 1332–1337. — MathSciNet: MR0427276. — zbMATH: Zbl 0379.40003.
    • I. M. Sobol’. Uniformly distributed sequences with an additional feature of uniformity // Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki. 1976. — V. 16, no. 5. — P. 1332–1337. — MathSciNet: MR0483283. — zbMATH: Zbl 0379.40003.
  7. И. М. Соболь. Об оценке чувствительности нелинейных математических моделей // Математическое моделирование. 1990. — Т. 2, № 5. — С. 112–118. — zbMATH: Zbl 0974.00506.
    • I. M. Sobol’. On sensitivity estimation for nonlinear mathematical models // Matematicheskoe modelirovanie. 1990. — V. 2, no. 5. — P. 112–118. — MathSciNet: MR1052836. — zbMATH: Zbl 0974.00506.
  8. I. M. Sobol’. Глобальные показатели чувствительности для изучения нелинейных математических моделей // Математическое моделирование. 2005. — Т. 7, № 9. — С. 43–52.
    • I. M. Sobol’. Global sensitivity indices for the investigation of nonlinear mathematical models // Matematicheskoe modelirovanie. 1990. — V. 2, no. 5. — P. 112–118. — MathSciNet: MR2190051. — zbMATH: Zbl 0974.00506.
  9. P. Boivin, C. Jimenez, A. L. Sanchez, F. A. Williams. An explicit reduced mechanism for H2-air combustion // Proceedings of the Combustion Institute. 2011. — V. 33, no. 1. — P. 517–523. — DOI: 10.1016/j.proci.2010.05.002.
  10. N. J. Brown, G. Li, M. L. Koszykowski. Model reduction techniques for chemical mechanisms // Int. J. Chem. Kinet. 1997. — V. 29, no. 6. — P. 393–414. — DOI: 10.1002/(SICI)1097-4601(1997)29:6<393::AID-KIN1>3.0.CO;2-P.
  11. Y. Hidaka, T. Taniguchi, H. Tanaka, et al. Shock-Tube Study of CH2O Pyrolysis and Oxidation // Combust. Flame. 1993. — V. 92, no. 4. — P. 365–376. — DOI: 10.1016/0010-2180(93)90149-W.
  12. The Kintecus simulation software. http://www.kintecus.com/.
  13. T. F. Lu, C. K. Law. A directed relation graph method for mechanism reduction // P. Combust. Inst. 2005. — V. 30. — P. 1333–1341. — DOI: 10.1016/j.proci.2004.08.145.
  14. T. F. Lu, C. K. Law. Linear time reduction of large kinetic mechanisms with directed relation graph: N-heptane and isooctane // Combustion and Flame. 2006. — V. 144. — P. 24–36. — DOI: 10.1016/j.combustflame.2005.02.015.
  15. T. Lovas. Model reduction techniques for chemical mechanisms / Chemical Kinetics. — InTech, 2012. — P. 79–114. — V. Patel.
  16. S. O. Miles, M. L. Mavrovouniotis. Simplification of mathematical models of chemical reaction systems // Chemicals Reviews. 1998. — V. 98, no. 2. — P. 391–408. — DOI: 10.1021/cr950223l.
  17. L. F. Nurislamova, O. P. Stoyanovskaya, O. A. Stadnichenko, I. M. Gubaidullin, V. N. Snytnikov, A. V. Novichkova. Few-Step Kinetic Model of Gaseous Autocatalytic Ethane Pyrolysis and Its Evaluation by Means of Uncertainty and Sensitivity Analysis // Chemical Product and Process Modeling. 2014. — V. 9, no. 2. — P. 143–154. — DOI: 10.1515/cppm-2014-0008.
  18. P. Repiot-Desjardins, H. Pitsch. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms // Combustion and Flame. 2008. — V. 154, no. 1–2. — P. 67–81. — DOI: 10.1016/j.combustflame.2007.10.020.
  19. А. Saltelli, M. Ratto, S. Tarantola, F. Campolongo. Sensitivity Analysis for Chemical Models // Chem Rev. 2005. — V. 205, no. 7. — P. 2811–2828. — DOI: 10.1021/cr040659d.
  20. А. Saltelli, M. Ratto, S. Tarantola, F. Campolongo. Sensitivity analysis practices: strategies for modelbased inference // Reliability Engineering and System Safety. 2006. — V. 91, no. 10–11. — P. 1109–1125. — DOI: 10.1016/j.ress.2005.11.014. — MathSciNet: MR2048817.
  21. Y. O. Shi, H. W. Ge, J. L. Brakora, R. D. Reitz. Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control // Energy Fuels. 2010. — V. 24. — P. 1646–1654. — DOI: 10.1021/ef901469p.
  22. I. M. Sobol’. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates // Mathematics and Computers in Simulation. 2001. — V. 55, no. 1–3. — P. 271–280. — DOI: 10.1016/S0378-4754(00)00270-6. — MathSciNet: MR1823119. — zbMATH: Zbl 1005.65004.
  23. S. Tomlin, P. Pillinc, T. Turanyi, J. Merkin, J. Brindley. Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyse // Combustion and Flame. 1992. — V. 91. — P. 107–130. — DOI: 10.1016/0010-2180(92)90094-6.
  24. A. S. Tomlin, T. Ziehn. The Use of Global Sensitivity Methods for the Analysis, Evaluation and Improvement of Complex Modelling Systems // Lecture Notes in Computational Science and Engineering. — Heidelberg: Springer, 2011. — V. 75. — P. 9–36. — DOI: 10.1007/978-3-642-14941-2_2. — MathSciNet: MR2757570.
  25. T. Turanyi. Sensitivity analysis of complex kinetic systems. Tools and applications // Journal of Mathematical Chemistry. 1990. — V. 5, no. 3. — P. 203–248. — DOI: 10.1007/BF01166355. — MathSciNet: MR1079660.
  26. A. G. Xia, D. V. Michelangeli. Mechanism reduction for the formation of secondary organic aerosol for integration into a 3-dimensional regional air quality model: α-pinene oxidation system // Atmos. Chem. Phys. 2009. — V. 9. — P. 4341–4362. — DOI: 10.5194/acp-9-4341-2009.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"