Investigation of the relationships of the size and production characteristics of phyto- and zooplankton in the Vistula and Curonian lagoons of the Baltic Sea. Part 1. The statistical analysis of long-term observation data and development of the structure for the mathematical model of the plankton food chain

 pdf (1756K)  / Annotation

List of references:

  1. С. В. Александров. Первичная продукция планктона в лагунных экосистемах Балтийского моря (Вислинский и Куршский заливы). — Калининград: ФГУП «АтлантНИРО», 2010. — 228 с.
    • S. V. Aleksandrov. Primary production of phytoplankton in the Curonian lagoon and Vistula lagoon of the Baltic Sea. — Kaliningrad: AtlantNIRO, 2010. — 228 p. — in Russian.
  2. А. Ф. Алимов, В. В. Богатов, С. М. Голубков. Продукционная гидробиология. — СПб: Наука, 2013. — 343 с.
    • A. F. Alimov, V. V. Bogatov, S. M. Golubkov. Production hydrobiology. — SPb: Nauka, 2013. — 343 p. — in Russian.
  3. Е. Н. Науменко. Зоопланктон прибрежной части Куршского залива. — Калининград: Атлант-НИРО, 2006. — 178 с.
    • E. N. Naumenko. Zooplankton of the littoral Curonian lagoon. — Kaliningrad: AtlantNIRO, 2006. — 178 p. — in Russian.
  4. Е. Н. Науменко. Структурно-функциональная организация зоопланктона Вислинского залива Балтийского моря. — Калининград: АтлантНИРО, 2010. — 198 с.
    • E. N. Naumenko. Structural-functional organization of zooplankton in the Vistula lagoon of the Baltic sea. — Kaliningrad: AtlantNIRO, 2010. — 198 p. — in Russian.
  5. К. А. Подгорный. Исследование свойств пространственно однородной математической модели четырехкомпонентной планктонной системы // Математическая биология и биоинформатика. 2012. — Т. 7, № 1. — С. 299–321.
    • K. A. Podgornyj. Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system // Mathem. Biol. and Bioinformatics. 2012. — V. 7, no. 1. — P. 299–321. — in Russian.
  6. К. А. Подгорный, А. В. Леонов. Обзор современных методов оценки значений коэффициентов, чувствительности и адекватности имитационных моделей водных экосистем // Водные ресурсы. 2015. — Т. 42, № 4. — С. 406–432.
    • Podgornyj K.. Review of the current methods used to assess the values of coefficients, sensitivity, and adequacy of simulation models of aquatic ecosystems // Water Resources. 2015. — V. 42, no. 4. — P. 406–432. — in Russian.
  7. M. Alcaraz. Marine zooplankton and the metabolic theory of ecology: is it a predictive tool? // J. Plankton Res. 2016. — V. 38. — P. 762–770. — DOI: 10.1093/plankt/fbw012.
  8. D. L. Aksnes, F. J. Cao. Inherent and apparent traits in microbial nutrient uptake // Mar. Ecol. Prog. Ser. 2011. — V. 440. — P. 41–51. — DOI: 10.3354/meps09355.
  9. D. L. Aksnes, J. K. Egge. A theoretical model for nutrient uptake in phytoplankton // Mar. Ecol. Prog. Ser. 1991. — V. 70. — P. 65–72. — DOI: 10.3354/meps070065.
  10. K. H. Andersen, D. L. Aksnes, T. Berge, Ø. Fiksen, A. Visser. Modelling emergent trophic strategies in plankton // J. Plankton Res. 2015. — V. 37. — P. 862–868. — DOI: 10.1093/plankt/fbv054.
  11. K. H. Andersen, T. Berge, R. J. Gonçalves, M. Hartvig, J. Heuschele, S. Hylander, N. S. Jacobsen, C. Lindemann, E. A. Martens, A. B. Neuheimer, K. Olsson, A. Palacz, F. Prowe, J. Sainmont, S. J. Traving, A. W. Visser, N. Wadhwa, T. Kiørboe. Characteristic sizes of life in the oceans, from bacteria to whales // Annu. Rev. Mar. Sci. 2016. — V. 8. — P. 1–25. — DOI: 10.1146/annurev-marine-122414-034144.
  12. R. A. Armstrong. Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis // Deep-Sea Res. I. 2008. — V. 55. — P. 1311–1317. — DOI: 10.1016/j.dsr.2008.05.004.
  13. M. E. Baird, S. M. Emsley. Towards a mechanistic model of plankton population dynamics // J. Plankton Res. 1999. — V. 21. — P. 85–126. — DOI: 10.1093/plankt/21.1.85.
  14. M. E. Baird, P. R. Oke, I. M. Suthers, J. H. Middleton. A plankton population model with biomechanical descriptions of biological processes in an idealized 2D ocean basin / Journal of Marine Systems. 2004. — V. 50. — P. 199–222.
  15. N. S. Banas. Adding complex trophic interactions to a size-spectral plankton model: emergent diversity patterns and limits on predictability // Ecol. Modelling. 2011. — V. 222. — P. 2663–2675. — DOI: 10.1016/j.ecolmodel.2011.05.018.
  16. A. D. Barton, B. A. Ward, R. G. Williams, M. J. Follows. The impact of fine-scale turbulence on phytoplankton community structure // Limnol. Oceanogr.: Fluids and Environments. 2014. — V. 4. — P. 34–49. — DOI: 10.1215/21573689-2651533.
  17. B. Bec, Y. Collos, A. Vaquer, D. Mouillot, P. Souchu. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes / Limnol. Oceanogr. 2008. — V. 53. — P. 863–867.
  18. P. Cermeño, E. Marañón, J. Rodríguez, E. Fernández. Size dependence of coastal phytoplankton photosynthesis under vertical mixing conditions / J. Plankton Res. 2005. — V. 27. — P. 473–483.
  19. S. Clayton, S. Dutkiewicz, O. Jahn, M. J. Follows. Dispersal, eddies, and the diversity of marine phytoplankton // Limnol. Oceanogr.: Fluids and Environments. 2013. — V. 3. — P. 182–197. — DOI: 10.1215/21573689-2373515.
  20. M. R. Droop. Some thoughts on nutrient limitation in algae // J. Phycol. 1973. — V. 9. — P. 264–272.
  21. R. C. Dugdale. Nutrient limitation in the sea: dynamics, identification, and significance // Limnol. Oceanogr. 1967. — V. 12. — P. 685–695. — DOI: 10.4319/lo.1967.12.4.0685.
  22. A. M. Edwards. Adding detritus to a nutrient–phytoplankton–zooplankton model: a dynamical-systems approach // J. Plankton Res. 2001. — V. 10. — P. 389–413. — DOI: 10.1093/plankt/23.4.389.
  23. K. F. Edwards, M. K. Thomas, C. A. Klausmeier, E. Litchman. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton // Limnol. Oceanogr. 2012. — V. 57. — P. 554–566. — DOI: 10.4319/lo.2012.57.2.0554.
  24. G. T. Evans. The encounter speed of moving predator and prey // J. Plankton Res. 1989. — V. 11. — P. 415–417. — DOI: 10.1093/plankt/11.2.415.
  25. Ø. Fiksen, M. J. Follows, D. L. Aksnes. Trait-based models of nutrient uptake in microbes extend the Michaelis-Menten framework // Limnol. Oceanogr. 2013. — V. 58. — P. 193–202. — DOI: 10.4319/lo.2013.58.1.0193.
  26. Z. V. Finkel. Light absorption and size scaling of light-limited metabolism in marine diatoms // Limnol. Oceanogr. 2001. — V. 46. — P. 86–94. — DOI: 10.4319/lo.2001.46.1.0086.
  27. Z. V. Finkel, M. J. Follows, A. J. Irwin. Size-scaling of macromolecules and chemical energy content in the eukaryotic microalgae // J. Plankton Res. 2016. — V. 38. — P. 1151–1162. — DOI: 10.1093/plankt/fbw057.
  28. Z. V. Finkel, A. J. Irwin. Modeling size-dependent photosynthesis: light absorption and the allometric rule // J. Theor. Biol. 2000. — V. 204. — P. 361–369. — DOI: 10.1006/jtbi.2000.2020.
  29. Z. V. Finkel, A. J. Irwin, O. Schofield. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton // Mar. Ecol. Prog. Ser. 2004. — V. 273. — P. 269–279. — DOI: 10.3354/meps273269.
  30. K. J. Flynn. Use, abuse, misconceptions and insights from quota models — the Droop cell quota models 40 years on // Oceanogr. Mar. Biol. Ann. 2008. — V. 48. — P. 1–23.
  31. P. J. S. Franks. Planktonic ecosystem models: perplexing parameterizations and a failure to fail // J. Plankton Res. 2009. — V. 31. — P. 1299–1306. — DOI: 10.1093/plankt/fbp069.
  32. W. Gentleman, A. Leising, B. Frost, S. Strom, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics // Deep-Sea Res. II. 2003. — V. 50. — P. 2847–2875. — DOI: 10.1016/j.dsr2.2003.07.001.
  33. K. Y. H. Gin, J. Guo, H.-F. Cheong. A size-based ecosystem model for pelagic waters // Ecol. Modelling. 1998. — V. 112. — P. 53–72. — DOI: 10.1016/S0304-3800(98)00126-4.
  34. J. S. Guasto, R. Rusconi, R. Stocker. Fluid mechanics of planktonic microorganisms / Annu. Rev. Fluid Mech. 2012. — V. 44. — P. 373–400. — MathSciNet: MR2882602.
  35. Handbook of environmental data and ecological parameters. — New York: Pergamon Press Inc, 1979. — 1185 p. — Ed. S. E. Jørgensen.
  36. P. J. Hansen, P. K. Bjørnsen, B. W. Hansen. Zooplankton grazing and growth: Scaling within the 2– 2,000-μm body size range / Limnol. Oceanogr. 1997. — V. 42. — P. 687–704.
  37. M. Hein, M. F. Pedersen, K. Sand-Jensen. Size-dependent nitrogen uptake in micro- and macroalgae // Mar. Ecol. Prog. Ser. 1995. — V. 118. — P. 247–253. — DOI: 10.3354/meps118247.
  38. M. Huete-Ortega, P. Cermeño, A. Calvo-Díaz, E. Marañón. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton // Proc. R. Soc. B. 2012. — V. 279. — P. 1815–1823. — DOI: 10.1098/rspb.2011.2257.
  39. M. Kagami, J. Urabe. Phytoplankton growth rate as a function of cell size: an experimental test in lake Biwa // Limnology. 2001. — V. 2. — P. 111–117. — DOI: 10.1007/s102010170006.
  40. L. Karp-Boss, E. Boss, P. A. Jumars. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion // Oceanography and Marine Biology: an Annual Review. 1996. — V. 34. — P. 71–107.
  41. T. Kiørboe. Turbulence, phytoplankton cell size, and the structure of pelagic food webs // Adv. in Marine Biology. 1993. — V. 29. — P. 1–72. — DOI: 10.1016/S0065-2881(08)60129-7.
  42. T. Kiørboe, E. Saiz. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods // Mar. Ecol. Prog. Ser. 1995. — V. 122. — P. 135–145. — DOI: 10.3354/meps122135.
  43. C. Lindemann, Ø. Fiksen, K. H. Andersen, D. L. Aksnes. Scaling laws in phytoplankton nutrient uptake affinity // Frontiers in Marine Science. 2016. — V. 3. — P. 1–6. — DOI: 10.3389/fmars.2016.00026.
  44. E. Litchman, C. A. Klausmeier, O. M. Schofield, P. G. Falkowski. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level // Ecology Letters. 2007. — V. 10. — P. 1170–1181. — DOI: 10.1111/j.1461-0248.2007.01117.x.
  45. B. R. MacKenzie, W. C. Leggett. Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons // Mar. Ecol. Prog. Ser. 1993. — V. 94. — P. 207–216. — DOI: 10.3354/meps094207.
  46. E. Marañón. Inter-specific scaling of phytoplankton production and cell size in the field // J. Plankton Res. 2008. — V. 30. — P. 157–163.
  47. E. Marañón, P. Cermeño, D. C. López-Sandoval, T. Rodríguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco, J. Rodríguez. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use // Ecology Letters. 2013. — V. 16. — P. 371–379. — DOI: 10.1111/ele.12052.
  48. A. M. Metcalfe, T. J. Pedley, T. F. Thingstad. Incorporating turbulence into a plankton foodweb model // Journal of Marine Systems. 2004. — V. 49. — P. 105–122. — DOI: 10.1016/j.jmarsys.2003.07.003.
  49. C. L. Moloney, J. G. Field. General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms // Limnol. Oceanogr. 1989. — V. 34. — P. 1290–1299. — DOI: 10.4319/lo.1989.34.7.1290.
  50. C. L. Moloney, J. G. Field. The size-dependent dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows // J. Plankton Res. 1991. — V. 13. — P. 1003–1038. — DOI: 10.1093/plankt/13.5.1003.
  51. V. A. Nepomnyashchikh, K. A. Podgornyj. Emergence of adaptive searching rules from the dynamics of a simple nonlinear system // Adaptive Behavior. 2003. — V. 11. — P. 245–265. — DOI: 10.1177/1059712303114002.
  52. J. G. Okie. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization // Am. Nat. 2013. — V. 181. — P. 421–439. — DOI: 10.1086/669150.
  53. M. A. Paredes, V. Montecino. Size diversity as an expression of phytoplankton community structure and the identification of its patterns on the scale of fjords and channels // Continental Shelf Res. 2011. — V. 31. — P. 272–281. — DOI: 10.1016/j.csr.2010.07.012.
  54. F. Peters, L. Arin, C. Marrasé, E. Berdalet, M. M. Sala. Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium // Journal of Marine Systems. 2006. — V. 61. — P. 134–148. — DOI: 10.1016/j.jmarsys.2005.11.012.
  55. F. J. Poulin, P. J. S. Franks. Size-structured planktonic ecosystems: constraints, controls and assembly instructions // J. Plankton Res. 2010. — V. 32. — P. 1121–1130. — DOI: 10.1093/plankt/fbp145.
  56. J. C. Prairie, K. R. Sutherland, K. J. Nickols, A. M. Kaltenberg. Biophysical interactions in the plankton: a cross-scale review // Limnol. Oceanogr.: Fluids and Environments. 2012. — V. 2. — P. 121–145. — DOI: 10.1215/21573689-1964713.
  57. J. A. Raven, J. E. Kübler. New light on the scaling of metabolic rate with the size of algae // J. Phycol. 2002. — V. 38. — P. 11–16. — DOI: 10.1046/j.1529-8817.2002.01125.x.
  58. B. J. Rothschild, T. R. Osborn. Small-scale turbulence and plankton contract rates // J. Plankton Res. 1988. — V. 10. — P. 465–474. — DOI: 10.1093/plankt/10.3.465.
  59. Y. Shimoda, Y. R. Rao, S. Watson, G. B. Arhonditsis. Optimizing the complexity of phytoplankton functional group modeling: an allometric approach // Ecological Informatics. 2016. — V. 31. — P. 1–17. — DOI: 10.1016/j.ecoinf.2015.11.001.
  60. Transboundary waters and basins in the South-East Baltic. — Kaliningrad: Terra Baltica, 2008. — 306 p. — Ed. by B. Chubarenko.
  61. S. Våge, M. Castellani, J. Giske, T. F. Thingstad. Successful strategies in size structured mixotrophic food webs // Aquat. Ecol. 2013. — V. 47. — P. 329–347. — DOI: 10.1007/s10452-013-9447-y.
  62. A. Verdy, M. Follows, G. Flierl. Optimal phytoplankton cell size in an allometric model // Mar. Ecol. Prog. Ser. 2009. — V. 379. — P. 1–12. — DOI: 10.3354/meps07909.
  63. A. W. Visser, Ø. Fiksen. Optimal foraging in marine ecosystem models: selectivity, profitability and switching // Mar. Ecol. Prog. Ser. 2013. — V. 473. — P. 91–101. — DOI: 10.3354/meps10079.
  64. B. A. Ward, S. Dutkiewicz, A. D. Barton, M. J. Follows. Biophysical aspects of resource acquisition and competition in algal mixotrophs // Am. Nat. 2011. — V. 178. — P. 98–112. — DOI: 10.1086/660284.
  65. Z. Witek, M. Zalewski, M. Wielgat-Rychert. Nutrient stocks and fluxes in the Vistula lagoon at the end of the twentieth century. — Slupsk–Gdynia, 2010. — 186 p.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"