Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression

 pdf (381K)  / Annotation

List of references:

  1. А. В. Гуcев, А. А. Полежаев. Моделирование эволюции клеточной популяции при наличии максимально допустимой суммарной плотности клеток // Кpаткие cообщения по физике ФИАН. 1997. — Т. 11–12. — С. 85.
    • A. V. Gusev, A. A. Polezhaev. Modeling of cell population evolution in presence of maximum permissible total cell density // Teoreticheskaya i matematicheskaya fizika. 1997. — V. 11–12. — P. 85. — in Russian.
  2. И. Б. Петров, А. А. Лобанов. Лекции по вычислительной математике. — Интернет-ун-т информ. технологий, 2006.
    • I. B. Petrov, A. A. Lobanov. Lectures on Computational Mathematics. — Internetun-t inform. tekhnologij, 2006. — in Russian. — MathSciNet: MR0319599.
  3. S. Ait-Oudhia, D. E. Mager, V. Pokuri. Bridging Sunitinib Exposure to Time-to-Tumor Progression in Hepatocellular Carcinoma Patients With Mathematical Modeling of an Angiogenic Biomarker // CPT: Pharmacometrics & Systems Pharmacology. 2016. — V. 5. — P. 297–304. — DOI: 10.1002/psp4.12084.
  4. A. R. A. Anderson, M. A. J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis // Bulletin of mathematical biology. 1998. — V. 60, no. 5. — P. 857–899. — DOI: 10.1006/bulm.1998.0042. — zbMATH: Zbl 0923.92011.
  5. J. P. Boris, D. L. Book. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works // Journal of computational physics. 1973. — V. 11, no. 1. — P. 38–69. — DOI: 10.1016/0021-9991(73)90147-2. — zbMATH: Zbl 0251.76004.
  6. B. R. Corr, C. Breed, J. Sheeder, et al. Bevacizumab induced hypertension in gynecologic cancer: Does it resolve after completion of therapy? // Gynecologic Oncology Reports. 2016. — V. 17. — P. 65–68. — DOI: 10.1016/j.gore.2016.06.002.
  7. J. F. de Groot, G. Fuller, A. J. Kumar, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice // Neuro-oncology. 2010. — V. 12, no. 3. — P. 233–242. — DOI: 10.1093/neuonc/nop027.
  8. J. M. L. Ebos, R. S. Kerbel. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis // Nature reviews Clinical oncology. 2011. — V. 8, no. 4. — P. 210–221. — DOI: 10.1038/nrclinonc.2011.21.
  9. N. Ferrara, H.-P. Gerber, J. LeCouter. The biology of VEGF and its receptors // Nature medicine. 2003. — V. 9, no. 6. — P. 669–676. — DOI: 10.1038/nm0603-669.
  10. J. Folkman. Tumor angiogenesis: therapeutic implications // New england journal of medicine. 1971. — V. 285, no. 21. — P. 1182–1186. — DOI: 10.1056/NEJM197111182852108.
  11. M. Galanopoulos, S. Ladias, X. Tzannetakou, et al. A rectovaginal fistula after treatment with bevacizumab. A dangerous side effect needing emergency treatment // Clinical case reports. 2016. — V. 4, no. 4. — P. 449–450. — DOI: 10.1002/ccr3.523.
  12. Avastin full Prescribing Information. — Genentech Inc. — http://www.gene.com/download/pdf/avastin_prescribing.pdf. — (2015-09-30).
  13. M. G. Ghosn, V. V. Tuchin, K. V. Larin. Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography // Optics letters. 2006. — V. 31, no. 15. — P. 2314–2316. — DOI: 10.1364/OL.31.002314.
  14. A. Giese, R. Bjerkvig, M. E. Berens, M. Westphal. Cost of migration: invasion of malignant gliomas and implications for treatment // Journal of clinical oncology. 2003. — V. 21, no. 8. — P. 1624–1636. — DOI: 10.1200/JCO.2003.05.063.
  15. A. Hawkins-Daarud, R. C. Rockne, A. R. A. Anderson, et al. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor // Frontiers in oncology. 2013. — V. 3. — P. 66. — DOI: 10.3389/fonc.2013.00066.
  16. H. J. Im, T. S. Kim, S.-Y. Park, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma // European journal of nuclear medicine and molecular imaging. 2012. — V. 39, no. 1. — P. 39–49. — DOI: 10.1007/s00259-011-1936-4. — zbMATH: Zbl 1284.20059.
  17. J. M. Kelm, C. D. Sanchez-Bustamante, E. Ehler, et al. VEGF profiling and angiogenesis in human microtissues // Journal of biotechnology. 2005. — V. 118, no. 2. — P. 213–229. — DOI: 10.1016/j.jbiotec.2005.03.016.
  18. R. S. Kerbel, E. Guerin, G. Francia, et al. Preclinical recapitulation of antiangiogenic drug clinical efficacies using models of early or late stage breast cancer metastatis // The Breast. 2013. — V. 22. — P. S57–S65. — DOI: 10.1016/j.breast.2013.07.011.
  19. O. Keunen, M. Johansson, A. Oudin, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma // Proceedings of the National Academy of Sciences. 2011. — V. 108, no. 9. — P. 3749–3754. — DOI: 10.1073/pnas.1014480108.
  20. K. J. Kim, B. Li, J. Winer, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo // Letters to Nature. 1993. — V. 362. — P. 841–844. — DOI: 10.1038/362841a0.
  21. J. Kleinheinz, S. Jung, K. Wermker, et al. Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model // Head & face medicine. 2010. — V. 6, no. 1. — P. 17. — DOI: 10.1186/1746-160X-6-17.
  22. A. V. Kolobov, A. A. Polezhaev, G. I. Solyanik. The role of cell motility in metastatic cell dominance phenomenon: analysis by a mathematical model // Computational and Mathematical Methods in Medicine. 2000. — V. 3, no. 1. — P. 63–77. — zbMATH: Zbl 0980.92014.
  23. A. V. Kolobov, M. B. Kuznetsov. The study of angiogenesis effect on the growth rate of an invasive tumor using a mathematical model // Russian Journal of Numerical Analysis and Mathematical Modelling. 2013. — V. 28, no. 5. — P. 471–484. — DOI: 10.1515/rnam-2013-0026. — MathSciNet: MR3296416.
  24. A. V. Kolobov, V. V. Gubernov, M. B. Kuznetsov. The study of antitumor efficacy of bevacizumab antiangiogenic therapy using a mathematical model // Russian Journal of Numerical Analysis and Mathematical Modelling. 2015. — V. 30, no. 5. — P. 289–297. — DOI: 10.1515/rnam-2015-0026. — MathSciNet: MR3420393. — zbMATH: Zbl 1325.92046.
  25. G. Lemon, D. Howard, M. J. Tomlinson, et al. Mathematical modelling of tissue-engineered angiogenesis // Mathematical biosciences. 2009. — V. 221, no. 2. — P. 101–120. — DOI: 10.1016/j.mbs.2009.07.003. — MathSciNet: MR2561137. — zbMATH: Zbl 1175.92028.
  26. J. R. Levick. An introduction to cardiovascular physiology. — Butterworth-Heinemann, 2013.
  27. F. Lignet, S. Benzekry, S. Wilson, et al. Theoretical investigation of the efficacy of antiangiogenic drugs combined to chemotherapy in xenografted mice // Journal of theoretical biology. 2013. — V. 320. — P. 86–99. — DOI: 10.1016/j.jtbi.2012.12.013. — MathSciNet: MR3042459.
  28. N. V. Mantzaris, S. Webb, H. G. Othmer. Mathematical modeling of tumor-induced angiogenesis // Journal of mathematical biology. 2004. — V. 49, no. 2. — P. 111–187. — DOI: 10.1007/s00285-003-0262-2. — MathSciNet: MR2145689. — zbMATH: Zbl 1109.92020.
  29. F. Milde, M. Bergdorf, P. Koumoutsakos. A hybrid model for three-dimensional simulations of sprouting angiogenesis // Biophysical journal. 2008. — V. 95, no. 7. — P. 3146–3160. — DOI: 10.1529/biophysj.107.124511. — MathSciNet: MR2283233.
  30. G. Mountzios, G. KePentheroudakislly, P. Carmeliet. Bevacizumab and micrometastases: revisiting the preclinical and clinical rollercoaster // Pharmacology & therapeutics. 2014. — V. 141, no. 2. — P. 117–124. — DOI: 10.1016/j.pharmthera.2013.09.003.
  31. A. Narayana, P. Kelly, J. Golfinos, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival: clinical article // Journal of neurosurgery. 2009. — V. 110, no. 1. — P. 173–180. — DOI: 10.3171/2008.4.17492.
  32. M. P `aez-Ribes, E. Allen, J. Hudock, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis // Cancer cell. 2009. — V. 15, no. 3. — P. 220–231. — DOI: 10.1016/j.ccr.2009.01.027.
  33. N. Papadopoulos, J. Martin, Q. Ruan, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab // Angiogenesis. 2012. — V. 15, no. 2. — P. 171–185. — DOI: 10.1007/s10456-011-9249-6.
  34. Y. Piao, J. Liang, L. Holmes, et al. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition // Clinical Cancer Research. 2013. — V. 19, no. 16. — P. 4392–4403. — DOI: 10.1158/1078-0432.CCR-12-1557.
  35. O. N. Pyaskovskaya, D. L. Kolesnik, A. V. Kolobov, et al. Analysis of growth kinetics and proliferative heterogeneity of lewis lung carcinoma cells growing as unfed culture // Exp. Oncol. 2008. — V. 30, no. 4. — P. 269–275.
  36. K. A. Rejniak. Systems Biology of Tumor Microenvironment. — Springer, 2016.
  37. O. Saut, J.-B. Lagaert, T. Colin, H. M. Fathallah-Shaykh. A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth // Bulletin of mathematical biology. 2014. — V. 76, no. 9. — P. 2306–2333. — DOI: 10.1007/s11538-014-0007-y. — MathSciNet: MR3255167. — zbMATH: Zbl 1300.92043.
  38. H. Vander, G. Matthew, L. C. Cantley, C. B. Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation // Science. 2009. — V. 324, no. 5930. — P. 1029–1033. — DOI: 10.1126/science.1160809.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"