All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Synchronous components of financial time series
pdf (1663K)
/ Annotation
List of references:
- Прикладная статистика. Классификация и снижение размерности. — М: Финансы и статистика, 1989.
- Applied Statistics. Classification and Reduction of Dimensionality. — Moscow: Finansy i statistica, 1989. — in Russian. — MathSciNet: MR0789433. , , , .
, , , . - Анализ данных систем геофизического и экологического мониторинга. — М: Наука, 2007.
- Analysis of the data from geophysical and ecological monitoring systems. — Mosocw: Nauka, 2007. — in Russian. .
. - Анализ канонических когерентностей в задачах геофизического мониторинга // Физика Земли. — 1998. — № 1. — С. 59–66.
- Analiz canonicheskih cogerentnostey v zadachah geofizicheskogo monitoringa // Fizika Zemli. — 1998. — no. 1. — P. 59–66. — in Russian. .
- Analysis of Canonical Coherences in the Problems of Geophysical Monitoring // Izvestiya, Physics of the Solid Earth. — 1998. — V. 34, no. 1. — P. 52–58. .
. - Прогноз Великого Японского землетрясения // Природа. — 2012. — № 8. — С. 23–33.
- Prediction of Great Japanese Earthquake // Russian Nature. — 2012. — no. 8. — P. 23–33. — in Russian. .
. - Прогностические свойства случайных флуктуаций геофизических характеристик // Биосфера. — 2014. — № 4. — С. 319–338.
- Prognostic properties of stochastic variations in geophysical parameters // Biosphere. — 2014. — no. 4. — P. 319–338. — in Russian. .
. - Статистики временных фрагментов низкочастотных микросейсм: их тренды и синхронизация // Физика Земли. — 2010. — № 6. — С. 86–96.
- Statistiki vremennyh fragmentov nizkochastotnyh microseism: ih trendy i sinhronizaciya // Fizika Zemli. — 2010. — no. 6. — P. 86–96. — in Russian. .
- The statistics of the time segments of low-frequency microseisms: trends and synchronization // Izvestiya, Physics of the Solid Earth. — 2010. — V. 46, no. 6. — P. 544–554. — DOI: 10.1134/S1069351310060091. .
. - Выделение «медленных событий» в асейсмическом регионе // Физика Земли. — 1999. — № 3. — С. 35–44.
- Vydelenie “medlennyh sobytiy” v aseismicheskom regione // Fizika Zemli. — 1999. — no. 3. — P. 35–44. , , .
- Recognition of “Slow Events” in an Aseismic Region // Izvestiya, Physics of the Solid Earth. — 1999. — V. 35, no. 3. — P. 195–203. , , .
, , . - Вейвлеты в обработке сигналов. — М: Мир, 2005.
- Veivlety v obrabotke signalov. — Moskva: Mir, 2005. — in Russian. .
- A Wavelet Tour of Signal Processing. — San Diego, London, Boston, New York, Sydney, Tokyo, Toronto: Academic Press, 1999. — Second edition. — MathSciNet: MR1614527. — zbMATH: Zbl 0998.94510. .
. - Фракталы, случай и финансы. — М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004.
- Fraktaly, sluchaj i finansy. — Moskva–Izhevsk: Regulyarnaya i haoticheskaya dinamika, 2004. — in Russian. .
- Fractales, hazard et finance. — Flammarion, 1997. — MathSciNet: MR0785362. .
. - Московская биржа акции [электронный ресурс]. — http: //www.finam.ru/analysis/export/default.asp. — дата обращения: 06.02.2017.
- Moscow Exchange Shares dataset [Electronic resource]. — http://www.finam.ru/analysis/export/default.asp.
- Диадические вейвлеты и масштабирующие функции на полупрямой // Матем. сб. — 2006. — Т. 197, № 10. — С. 129–160. — zbMATH: Zbl 1214.42076.
- Dyadic wavelets and refinable functions on a half-line // Mat. Sbornik. — 2006. — V. 197, no. 10. — P. 129–160. — in Russian. — DOI: 10.4213/sm1126. — Math-Net: Mi eng/sm1126. — MathSciNet: MR2310119. — zbMATH: Zbl 1214.42076. , .
- Dyadic wavelets and refinable functions on a half-line // Sbornik: Mathematics. — 2006. — V. 197. — P. 1529–1558. — DOI: 10.1070/SM2006v197n10ABEH003811. — MathSciNet: MR2310119. — zbMATH: Zbl 1214.42076. , .
, . - О применениях вейвлетов к цифровой обработке сигналов // Известия Саратовского университета. Сер. Математика. Механика. Информатика. — 2016. — Т. 16, № 2. — С. 217–225.
- On applications of wavelets in digital signal processing // Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform. — 2016. — V. 16, no. 2. — P. 217–225. — in Russian. — DOI: 10.18500/1816-9791-2016-16-2-217-225. — Math-Net: Mi eng/isu639. — MathSciNet: MR3522916. — zbMATH: Zbl 1350.42055. .
. - Time Series Analysis: Forecasting and Control, 5th Edition. — John Wiley & Sons. Inc, 2016. — MathSciNet: MR3379415. , , , .
- Multiscale analysis of stock index return volatility // Computational Economics. — 2004. — V. 23, no. 3. — P. 219–237. — DOI: 10.1023/B:CSEM.0000022834.86489.e5. — zbMATH: Zbl 1066.91079. .
- Mathematical Methods of Statistics. — Princeton University Press, 1999. — MathSciNet: MR1816288. — zbMATH: Zbl 0985.62001. .
- Adapting to Unknown Smoothness via Wavelet Shrinkage // Journal of the American Statistical Association. — 1995. — V. 90, no. 432. — P. 1200–1224. — DOI: 10.1080/01621459.1995.10476626. — MathSciNet: MR1379464. — zbMATH: Zbl 0869.62024. , .
- Fractals. — New York, London: Plenum Press, 1988. — MathSciNet: MR0949210. — zbMATH: Zbl 0648.28006. .
- Portfolio management under sudden changes in volatility and hetero geneous investment horizons // Physica A: Statistical Mechanics and its Applications. — 2007. — V. 375, no. 2. — P. 612–624. — DOI: 10.1016/j.physa.2006.10.004. , .
- Wavelet applications in economics and finance. — Berlin: Springer, 2014. — zbMATH: Zbl 1298.91029. , .
- Catastrophe theory for scientists and engineers. — New York: John Wiley and Sons, Inc, 1981. — MathSciNet: MR0622545. — zbMATH: Zbl 0497.58001. .
- An introduction to wavelet theory in finance. — Singapore: World Scientific, 2012. — MathSciNet: MR3236382. , .
- Multifractal detrended fluctuation analysis of nonstationary time series // Physica A. — 2002. — V. 316. — P. 87–114. — DOI: 10.1016/S0378-4371(02)01383-3. — zbMATH: Zbl 1001.62029. , , , , , .
- Dynamic stochastic models from empirical data. — New York; San Francisco; London: Acad. Press, 1976. , .
- International transmission of stock market movements: A wavelet analysis // Applied Economics Letters. — 2004. — V. 11. — P. 197–201. — DOI: 10.1080/1350485042000203850. .
- Multifractal Parameters of Low-Frequency Microseisms / Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences 1. — Chapter 15. — Verlag Berlin Heidelberg: Springer, 2010. — P. 253–272. — V. de Rubeis et al. .
- Prognostic properties of low-frequency seismic noise // Natural Science. — 2012. — V. 4, no. 8. — P. 659–666. — DOI: 10.4236/ns.2012.428087. .
- Dynamic estimate of seismic danger based on multifractal properties of lowfrequency seismic noise // Natural Hazards. — 2014. — V. 70, no. 1. — P. 471–483. — DOI: 10.1007/s11069-013-0823-7. .
- Exploring complexity, an introduction. — New York: W. H. Freedman and Co, 1989. , .
- Multiple time scales in volatility and leverage correlations: A stochastic volatility model // Applied Mathematical Finance. — 2004. — V. 11. — P. 27–50. — DOI: 10.1080/1350486042000196155. — zbMATH: Zbl 1093.91537. , , .
- Automated seizure detection: Unrecognized challenges, unexpected insights // Epilepsy & Behavior. — 2011. — V. 22, no. 1. — P. S7–S17. — DOI: 10.1016/j.yebeh.2011.09.011. , , .
- The analysis of foreign exchange data using waveform dictionaries. — C.V. Starr Center for Applied Economics Working paper New York University, 1995. , .
- An introduction to wavelets for economists. — Bank of Canada Working Paper, Toronto, 2002. .
- A multi-horizon scale for volatility / CES Working Paper. — University of Paris-1, 2008. — 44 p. — 2008.20. .
- The statistical mechanics of financial markets. — Berlin: Springer, 2005. — MathSciNet: MR2182114. — zbMATH: Zbl 1107.91055. .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science