An analysis of interatomic potentials for vacancy diffusion simulation in concentrated Fe–Cr alloys

 pdf (1532K)  / Annotation

List of references:

  1. В. А. Печенкин, А. Д. Чернова, В. Л. Молодцов, Г. В. Лысова, Г. А. Эпов. Радиационно-индуцированная сегрегация и свойства конструкционных материалов под облучением // Ядерная физика и инжиниринг. — 2013. — Т. 4, № 5. — С. 443–461.
    • V. A. Pechenkin, A. D. Chernova, V. L. Molodtsov, G. V. Lysova, G. A. Epov. Radiation Induced Segregation and the Properties of Structural Materials under Irradiation // Yadernaya fizika i inzhiniring. — 2013. — V. 4, no. 5. — P. 443–461. — in Russian.
  2. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev. Development of an interatomic potential for phosphorus impurities in α-iron // J. Phys.: Condens. Matter. — 2004. — V. 16, no. 27. — P. 2629–2642. — DOI: 10.1088/0953-8984/16/27/003.
  3. T. R. Allen, L. Tan, J. Gan, G. Gupta, G. S. Was, E. A. Kenik, S. Shutthanandan, S. Thevuthasan. Microstructural development in advanced ferritic–martensitic steel HCM12A // J. Nucl. Mater. — 2006. — V. 351, no. 1–3. — P. 174–186. — DOI: 10.1016/j.jnucmat.2006.02.014.
  4. G. Bonny, D. Terentyev, L. Malebra. Identification and characterization of Cr-rich precipitates in FeCr alloys: An atomistic study // Comp. Mater. Sci. — 2008. — V. 42, no. 1. — P. 107–112. — DOI: 10.1016/j.commatsci.2007.06.017.
  5. G. Bonny, R. C. Pasianot, D. Terentyev, L. Malebra. Iron chromium potential to model high-chromium ferritic alloys // Phil. Mag. — 2011. — V. 91, no. 12. — P. 1724–1746. — DOI: 10.1080/14786435.2010.545780.
  6. A. W. Bowen, G. M. Leak. Diffusion in Bcc iron base alloys // Metall. Trans. — 1970. — V. 1, no. 10. — P. 2767–2773.
  7. R. Braun, M. Feller-Kniepmeier. Diffusion of chromium in α-iron // Phys. Stat. Sol. A. — 1985. — V. 90, no. 2. — P. 553–561. — DOI: 10.1002/pssa.2210900219.
  8. A. Caro, D. A. Crowson, M. Caro. Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys // Phys. Rev. Lett. — 2005. — V. 95, no. 7. — P. 075702–1–075702–4. — DOI: 10.1103/PhysRevLett.95.075702.
  9. M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. — 1984. — V. 26, no. 12. — P. 6443–6453. — DOI: 10.1103/PhysRevB.29.6443.
  10. S. M. Eich, D. Beinke, G. Schmitz. Embedded-atom potential for an accurate thermodynamic description of the iron–chromium system // Comp. Mater. Sci.. — 2015. — V. 104. — P. 185–192. — DOI: 10.1016/j.commatsci.2015.03.047.
  11. M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential for transition metals // Phil. Mag. — 1984. — V. 50, no. 1. — P. 45–55. — DOI: 10.1080/01418618408244210.
  12. G. Gupta, Z. Jiao, A. N. Ham, J. T. Busby, G. S. Was. Microstructural evolution of proton irradiated T91 // J. Nucl. Mater. — 2006. — V. 351, no. 1–3. — P. 162–173. — DOI: 10.1016/j.jnucmat.2006.02.028.
  13. Z. Jiao, G. S. Was. Segregation behavior in proton- and heavy-ion-irradiated ferritic–martensitic alloys // Acta Mater. — 2011. — V. 59, no. 11. — P. 4467–4481. — DOI: 10.1016/j.actamat.2011.03.070.
  14. O. A. Korchuganova, Z. Jiao, M. Thuvander, A. A. Aleev, S. V. Rogozhkin, T. Boll, T. V. Kulevoy. Microstructural evolution of Fe – 22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography // J. Nucl. Mater. — 2016. — V. 477. — P. 172–177. — DOI: 10.1016/j.jnucmat.2016.05.007.
  15. Z. Lu, R. G. Faulkner, G. S. Was, B. D. Wirth. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels // Scripta Mater. — 2011. — V. 58, no. 10. — P. 878–881.
  16. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta. Development of new interatomic potentials appropriate for crystalline and liquid iron // Phil. Mag. A. — 2003. — V. 83, no. 35. — P. 3977–3994. — DOI: 10.1080/14786430310001613264.
  17. I. Mirebeau, M. Hennion, G. Parette. First measurement of short-range-order inversion as a function of concentration in a transition alloy // Phys. Rev. Lett. — 1984. — V. 53, no. 7. — P. 687–690. — DOI: 10.1103/PhysRevLett.53.687.
  18. P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba. Two-band modeling of α-prime phase formation in Fe – Cr // Phys. Rev. B. — 2005. — V. 72, no. 21. — P. 214119–1–214119–4. — DOI: 10.1103/PhysRevB.72.214119.
  19. Y. N. Osetsky, L. K. Beland, R. E. Stoller. Specific features of defect and mass transport in concentrated fcc alloys // Acta Mater. — 2016. — V. 115. — P. 354–371. — DOI: 10.1016/j.actamat.2016.06.018.
  20. Y. N. Osetsky. Atomistic Study of Diffusional Mass Transport in Metals // Defect Diff. Forum. — 2001. — V. 188–190. — P. 71–92. — DOI: 10.4028/www.scientific.net/DDF.188-190.71.
  21. V. A. Pechenkin, V. L. Molodtsov, V. A. Ryabov, D. Terentyev. On the radiation-induced segregation: Contribution of interstitial mechanism in Fe–Cr alloys // J. Nucl. Mater. — 2013. — V. 433, no. 1–3. — P. 372–377. — DOI: 10.1016/j.jnucmat.2012.10.016.
  22. S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comp. Phys. — 1995. — V. 117, no. 1. — P. 1–19. — DOI: 10.1006/jcph.1995.1039.
  23. Rio E. del, J. M. Sampedro, H. Dogo, M. J. Caturla, M. Caro, A. Caro. Formation energy of vacancies in FeCr alloys: Dependence on Cr concentration // J. Nucl. Mater. — 2011. — V. 408, no. 1. — P. 18–24. — DOI: 10.1016/j.jnucmat.2010.10.021.
  24. S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. B. Germanov, A. G. Zaluzhnyi. Atom probe study of radiation induced precipitates in Eurofer 97 Ferritic-Martensitic steel irradiated in BOR-60 reactor // Inorg. Mater.: Appl. Res. — 2013. — V. 4, no. 2. — P. 112–118. — DOI: 10.1134/S2075113313020160.
  25. O. Senninger, F. Soisson, E. Martinez, M. Nastar, C. Fu, Y. Brechet. Modeling radiation induced segregation in iron-chromium alloys // Acta Mater. — 2016. — V. 103. — P. 1–11. — DOI: 10.1016/j.actamat.2015.09.058.
  26. A. Stukowski, B. Sadigh, P. Erhart, A. Caro. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations // Modelling Simul. Mater. Sci. Eng. — 2009. — V. 17, no. 7. — P. 075005–1–075005–13. — DOI: 10.1088/0965-0393/17/7/075005.
  27. V. Svetukhin, P. L’vov, E. Gaganidze, M. Tikhonchev, C. Dethloff. Kinetics and thermodynamics of Cr nanocluster formation in Fe–Cr system // J. Nucl. Mater. — 2013. — V. 415, no. 2. — P. 205–209. — DOI: 10.1016/j.jnucmat.2011.06.005.
  28. G. S. Was, J. P. Wharry, B. Frisbie, B. D. Wirth, D. Morgan, J. D. Tucker, T. R. Allen. Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys // J. Nucl. Mater. — 2011. — V. 411, no. 1–3. — P. 41–50. — DOI: 10.1016/j.jnucmat.2011.01.031.
  29. H. J. Wollenberger. Point defects / Physical Metallurgy. — North-Holland, Amsterdam, 1996. — V. 2. — P. 1621–1721. — R. W. Cahn & P. Haasen.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"