All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Computer research of the holomorphic dynamics of exponential and linear-exponential maps
pdf (32274K)
/ Annotation
List of references:
- Голоморфная динамика. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — 320 с.
- Dynamics in one complex variable. Introductory Lectures. — 2nd edition. Weisbaden: Vieweg Verlag, 2000. — vii + 257 p. — MathSciNet: MR1721240. .
- Golomorfnaja dinamika. — Izhevsk: NIC Reguljarnaja i haoticheskaja dinamika, 2000. — 320 p. — Russian ed. .
. - Красота фракталов. Образы комплексных динамических систем. — М: Мир, 1993. — 176 с.
- The beauty of fractals: images of complex dynamical systems. — Berlin Heideberg: Springer-Verlag, 1986. — MathSciNet: MR0852695. , .
- Krasota fraktalov. Obrazy kompleksnyh dinamicheskih system. — Moscow: Mir, 1993. — 176 p. — Russian ed. , .
, . - The geometry of Julia sets // Trans. Amer. Math. Soc. — 1993. — no. 338. — P. 897–918. — DOI: 10.1090/S0002-9947-1993-1182980-3. — MathSciNet: MR1182980. , .
- Iterating exponential functions with cyclic exponents // Math. Proc. Cambridge Philos. Soc. — 1989. — V. 105, no. 2. — P. 357–375. — DOI: 10.1017/S0305004100067852. — MathSciNet: MR0974992. , .
- ez-Dynamics and Bifurcation // International Journal of Bifurcation and Chaos. — 1991. — V. 1. — P. 287–308. — DOI: 10.1142/S0218127491000221. — MathSciNet: MR1120198. — ads: 1991IJBC....1..287D. .
- Cantor bouquets, explosions, and knaster continua: dynamics of complex exponentials // Publicacions Matemántiques. — 1999. — V. 43. — P. 27–54. — DOI: 10.5565/PUBLMAT_43199_02. — MathSciNet: MR1697515. .
- A century of complex dynamics / A Century of Advancing Mathematics. — MAA, 2015. — P. 15–34. — MathSciNet: MR3408139. , .
- From deterministic cellular automata to coupled map lattices // J. Phys. A: Math. Theor. — 2016. — V. 49. — 295101. — DOI: 10.1088/1751-8113/49/29/295101. — MathSciNet: MR3512122. .
- On the domain of attraction of exp(–exp(–x)) // Statistics and Probability Letters. — 1996. — V. 31, no. 2. — P. 91–95. — DOI: 10.1016/S0167-7152(96)00018-1. — MathSciNet: MR1421559. .
- On the measurable dynamics of z z e // Ergodic Theory Dynam. Systems. — 1985. — V. 5, no. 3. — P. 329–335. — DOI: 10.1017/S0143385700002984. — MathSciNet: MR0805833. , , .
- A finiteness theorem for a dynamical class of entire functions // Ergodic Theory and Dynamical Systems. — 1986. — V. 6. — P. 183–192. — DOI: 10.1017/S0143385700003394. — MathSciNet: MR0857196. , .
- Dynamics of (ez – 1)/z: the Julia set and Bifurcation // Ergodic Theory and Dynamical Systems. — 1998. — no. 18(6). — P. 1363–1383. — DOI: 10.1017/S0143385798118011. — MathSciNet: MR1658643. , .
- Chaotic burst in the dynamics of a class of noncritically finite entire functions // Int. J. Bifurcation Chaos. — 1999. — V. 09. — P. 1137–1151. — DOI: 10.1142/S021812749900078X. — MathSciNet: MR1712424. , .
- Cantor bouquets for non-entire meromorphic functions / Workshop on Cantor bouquets in hedgehogs and transcendental iteration. — june 16th–19th 2009, Toulouse, France. — Electronic resource. — http://www.math.univ-toulouse.fr/anr_abc/bouquet/Slides/Janina.pdf. .
- Fractals: form, chance, and dimension. — WH Freeman, 1977. — 365 p. — MathSciNet: MR0471493. .
- On some properties of an exp(iz) map // Russian Journal of Nonlinear Dynamics. — 2016. — V. 12, no. 1. — P. 3–15. — MathSciNet: MR3604259. .
- Тopological Dynamics of Transcendental Entire Functions. — England: Univ. of Liverpool, 2009. — PhD dissertation. .
- The Dynamics of lambda z + exp(z) // Journal of Mathematical Analysis and Applications. — 1998. — V. 222, no. 1. — P. 38–63. — DOI: 10.1006/jmaa.1997.5724. , .
- Chaotic burst in the dynamics of fλ(z) = λ(sinh (z)/z) // Regular and Chaotic Dynamics. — 2005. — no. 10(1). — P. 71–80. — DOI: 10.1070/RD2005v010n01ABEH000301. — MathSciNet: MR2136831. .
- Hyperbolic entire functions and the Eremenko-Lyubich class: Class B or not class B?. — 2016. — Electronic resource. — http://arxiv.org/pdf/1502.00492v1.pdf. — MathSciNet: MR3671560. , .
- Existence of indecomposable continua for unstable exponentials // Topology Proceedings. — 2002. — V. 27, no. 1. — P. 233–244. — MathSciNet: MR2048934. .
- On indecomposable subsets of the Julia set for unstable exponentials. — Boston University, 2002. — PhD dissertation. — MathSciNet: MR2703147. .
- Growth in complex exponential dynamics // Computers and Graphics. — 2000. — V. 24, no. 1. — P. 115–131. — DOI: 10.1016/S0097-8493(99)00142-9. , , , .
- Dynamics of Entire Functions / Lectures given at the C.I.M.E. — Springer, 2008. — Summer School held in Cetraro, Italy, July 7–12. .
- Dynamics of a family of continued fraction maps // Experimental mathematics. — 2017. — Electronic resource. — DOI: 10.1080/14689367.2017.1390070 . , .
- Real analyticity of Hausdorff dimension of finer Julia sets of exponential family // Ergodic Theory Dynam. Systems. — 2004. — V. 24, no. 1. — P. 279–315. , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science