Computer research of the holomorphic dynamics of exponential and linear-exponential maps

 pdf (32274K)  / Annotation

List of references:

  1. Дж. Милнор. Голоморфная динамика. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — 320 с.
    • J. Milnor. Dynamics in one complex variable. Introductory Lectures. — 2nd edition. Weisbaden: Vieweg Verlag, 2000. — vii + 257 p. — MathSciNet: MR1721240.
    • Dzh. Milnor. Golomorfnaja dinamika. — Izhevsk: NIC Reguljarnaja i haoticheskaja dinamika, 2000. — 320 p. — Russian ed.
  2. Х.-О. Пайтген, П. Х. Рихтер. Красота фракталов. Образы комплексных динамических систем. — М: Мир, 1993. — 176 с.
    • H.-O. Peitgen, P. H. Richter. The beauty of fractals: images of complex dynamical systems. — Berlin Heideberg: Springer-Verlag, 1986. — MathSciNet: MR0852695.
    • H.-O. Pajtgen, P. H. Rihter. Krasota fraktalov. Obrazy kompleksnyh dinamicheskih system. — Moscow: Mir, 1993. — 176 p. — Russian ed.
  3. J. Aarts, L. Oversteegen. The geometry of Julia sets // Trans. Amer. Math. Soc. — 1993. — no. 338. — P. 897–918. — DOI: 10.1090/S0002-9947-1993-1182980-3. — MathSciNet: MR1182980.
  4. I. N. Baker, P. J. Rippon. Iterating exponential functions with cyclic exponents // Math. Proc. Cambridge Philos. Soc. — 1989. — V. 105, no. 2. — P. 357–375. — DOI: 10.1017/S0305004100067852. — MathSciNet: MR0974992.
  5. R. L. Devaney. ez-Dynamics and Bifurcation // International Journal of Bifurcation and Chaos. — 1991. — V. 1. — P. 287–308. — DOI: 10.1142/S0218127491000221. — MathSciNet: MR1120198. — ads: 1991IJBC....1..287D.
  6. R. L. Devaney. Cantor bouquets, explosions, and knaster continua: dynamics of complex exponentials // Publicacions Matemántiques. — 1999. — V. 43. — P. 27–54. — DOI: 10.5565/PUBLMAT_43199_02. — MathSciNet: MR1697515.
  7. R. Devaney, A. Dan. A century of complex dynamics / A Century of Advancing Mathematics. — MAA, 2015. — P. 15–34. — MathSciNet: MR3408139.
  8. V. Garcia-Morales. From deterministic cellular automata to coupled map lattices // J. Phys. A: Math. Theor. — 2016. — V. 49. — 295101. — DOI: 10.1088/1751-8113/49/29/295101. — MathSciNet: MR3512122.
  9. J. L. Geluk. On the domain of attraction of exp(–exp(–x)) // Statistics and Probability Letters. — 1996. — V. 31, no. 2. — P. 91–95. — DOI: 10.1016/S0167-7152(96)00018-1. — MathSciNet: MR1421559.
  10. É. Ghys, L. R. Goldberg, D. P. Sullivan. On the measurable dynamics of z z e // Ergodic Theory Dynam. Systems. — 1985. — V. 5, no. 3. — P. 329–335. — DOI: 10.1017/S0143385700002984. — MathSciNet: MR0805833.
  11. R. Goldberg, L. Keen. A finiteness theorem for a dynamical class of entire functions // Ergodic Theory and Dynamical Systems. — 1986. — V. 6. — P. 183–192. — DOI: 10.1017/S0143385700003394. — MathSciNet: MR0857196.
  12. G. P. Kapoor, M. G. P. Prasad. Dynamics of (ez – 1)/z: the Julia set and Bifurcation // Ergodic Theory and Dynamical Systems. — 1998. — no. 18(6). — P. 1363–1383. — DOI: 10.1017/S0143385798118011. — MathSciNet: MR1658643.
  13. G. P. Kapoor, M. G. P. Prasad. Chaotic burst in the dynamics of a class of noncritically finite entire functions // Int. J. Bifurcation Chaos. — 1999. — V. 09. — P. 1137–1151. — DOI: 10.1142/S021812749900078X. — MathSciNet: MR1712424.
  14. J. Kotus. Cantor bouquets for non-entire meromorphic functions / Workshop on Cantor bouquets in hedgehogs and transcendental iteration. — june 16th–19th 2009, Toulouse, France. — Electronic resource. — http://www.math.univ-toulouse.fr/anr_abc/bouquet/Slides/Janina.pdf.
  15. B. B. Mandelbrot. Fractals: form, chance, and dimension. — WH Freeman, 1977. — 365 p. — MathSciNet: MR0471493.
  16. I. V. Matyushkin. On some properties of an exp(iz) map // Russian Journal of Nonlinear Dynamics. — 2016. — V. 12, no. 1. — P. 3–15. — MathSciNet: MR3604259.
  17. H. Mihaljević-Brandt. Тopological Dynamics of Transcendental Entire Functions. — England: Univ. of Liverpool, 2009. — PhD dissertation.
  18. P. Petek, M. U. S. Kirchgraber. The Dynamics of lambda z + exp(z) // Journal of Mathematical Analysis and Applications. — 1998. — V. 222, no. 1. — P. 38–63. — DOI: 10.1006/jmaa.1997.5724.
  19. M. G. P. Prasad. Chaotic burst in the dynamics of fλ(z) = λ(sinh (z)/z) // Regular and Chaotic Dynamics. — 2005. — no. 10(1). — P. 71–80. — DOI: 10.1070/RD2005v010n01ABEH000301. — MathSciNet: MR2136831.
  20. L. Rempe-Gillen, D. Sixsmith. Hyperbolic entire functions and the Eremenko-Lyubich class: Class B or not class B?. — 2016. — Electronic resource. — http://arxiv.org/pdf/1502.00492v1.pdf. — MathSciNet: MR3671560.
  21. M. M. Rocha. Existence of indecomposable continua for unstable exponentials // Topology Proceedings. — 2002. — V. 27, no. 1. — P. 233–244. — MathSciNet: MR2048934.
  22. M. M. Rocha. On indecomposable subsets of the Julia set for unstable exponentials. — Boston University, 2002. — PhD dissertation. — MathSciNet: MR2703147.
  23. M. Romera, G. Pastor, G. Alvarez, F. Montoya. Growth in complex exponential dynamics // Computers and Graphics. — 2000. — V. 24, no. 1. — P. 115–131. — DOI: 10.1016/S0097-8493(99)00142-9.
  24. D. Schleicher. Dynamics of Entire Functions / Lectures given at the C.I.M.E. — Springer, 2008. — Summer School held in Cetraro, Italy, July 7–12.
  25. M. Uludag, H. Ayral. Dynamics of a family of continued fraction maps // Experimental mathematics. — 2017. — Electronic resource. — DOI: 10.1080/14689367.2017.1390070 .
  26. M. Urbánski, A. Zdunik. Real analyticity of Hausdorff dimension of finer Julia sets of exponential family // Ergodic Theory Dynam. Systems. — 2004. — V. 24, no. 1. — P. 279–315.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"