Determination of CT dose by means of noise analysis

 pdf (8789K)  / Annotation

List of references:

  1. А. С. Гвай, Л. А. Аверьянова. Анализ методик определения дозы облучения в рентгеновской компьютерной томографии // Вестник НТУ «ХПИ». — 2013. — № 39(1012). — С. 41–47.
    • A. S. Gvay, L. A. Averyanova. Аnalysis techniques in determining exposure dose in X-ray computed tomographys // Herald of the National Technical University "KhPI". Subject issue: Information Science and Modelling. — Kharkov: NTU “KhPI”, 2013. — no. 39(1012). — P. 41–47. — in Russian.
  2. В. К. Иванов, В. В. Кащеев, С. Ю. Чекин, А. Н. Меняйло, Е. А. Пряхин, А. Ф. Цыб, Ф. А. Метлер. Оценка радиационного риска медицинского облучения в терминах эффективной и органных доз // Радиация и риски. — 2012. — Т. 21, № 4.
    • V. K. Ivanov, V. V. Kashcheev, S. Yu. Chekin, A. N. Menyaylo, E. A. Pryakhin, A. F. Tsyb, F. A. Mettler. Estimation of risk from medical radiation exposure based on effective and organ dose // Radiation and Risks. — 2012. — V. 21, no. 4. — in Russian.
  3. В. В. Кащеев, Е. А. Пряхин, А. Н. Меняйло, С. Ю. Чекин, В. К. Иванов. Расчет эквивалентных доз в отдельных органах и тканях и величины пожизненного радиационного риска развития рака при проведении типовых обследований с использованием компьютерной томографии // Радиация и риск. — 2013. — Т. 22, № 3.
    • V. V. Kashcheev, E. A. Pryakhin, A. N. Menyaylo, S. Yu. Chekin, V. K. Ivanov. Calculation of equivalent doses to organs and tissues, as well as lifetime attributable risk from typical computed tomography imaging // Radiation and Risks. — 2013. — V. 22, no. 3. — in Russian.
  4. A. Akar, H. Baltaş, U. Çevik, F. Korkmaz, N. T. Okumuşoğlu. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV c-ray energies // JQSRT. — 2006. — V. 102, no. 2. — P. 203–11. — DOI: 10.1016/j.jqsrt.2006.02.007. — ads: 2006JQSRT.102..203A.
  5. D. A. Bradley, C. S. Chong, A. M. Ghose. Photon absorptiometric studies elements, mixtures and substances of biomedical interest // Phys Med Biol. — 1986. — V. 31. — P. 267–273. — DOI: 10.1088/0031-9155/31/3/005.
  6. J. A. Christner, J. M. Kofler, C. H. McCollough. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning // AJR Am J Roentgenol. — 2010. — V. 194, no. 4. — P. 881–9. — DOI: 10.2214/AJR.09.3462.
  7. K. Fujii, T. Aoyama, S. Koyama, C. Kawaura. Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT examinations // The British Journal of Radiology. — 2007. — V. 80. — P. 657–667. — DOI: 10.1259/bjr/97260522.
  8. J. H. Hubbell, S. M. Seltzer. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20MeV for elements Z = 1 to 92 and 48 an additional substances of Dosimetric interest. — 1995. — P. 5632. — National Institute of Standards and Technology, Physical Reference Data.
  9. M. S. Usanov, N. S. Kulberg, A. V. Petraikin, S. P. Morozov. Newly developed curvelet-based noise reduction algorithm for volume CT data / ESR 2018 Congress. — 2018. — Vien, Austria.
  10. C. Won Kim, J. H. Kim. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOMC images // Medical Physics. — 2014. — V. 41, no. 1. — 011901. — ads: 2014MedPh..41a1901W.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"