Perspectives of using a satellite imagery data for prediction of heavy metals contamination

 pdf (2420K)  / Annotation

List of references:

  1. А. Ужинский, Г. Ососков, М. Фронтасьева. Управление данными мониторинга окружающей среды // Открытые системы. СУБД. — 2017. — № 4. — С. 42–43.
    • A. Uzhinskiy, G. Ososkov, M. Frontasyeva. Environment monitoring data management // Open System. DMS. — 2017. — no. 4. — P. 42–43. — in Russian.
  2. А. Андреева, А. Бузников, С. Скрябин, А. Тимофеев, Н. Алексеева-Попова, А. Беляева. Исследование характера изменения оптических характеристик растительности под воздействием тяжелых металлов для разработки метода дистанционной диагностики загрязнения // Современные проблемы дистанционного зондирования Земли из космоса. — 2007. — Т. 2, № 4. — С. 175–182.
    • A. Andreeva, A. Buznikov, S. Skryabin, A. Timofeev, N. Alekseeva-Popova, A. Belyakova. Research of nature of vegetation optical characteristics change under the influence of heavy metals for development of a remote contamination diagnostics method // Current problems in remote sensing of the earth from space. — 2007. — V. 2, no. 4. — P. 175–182. — in Russian.
  3. K. Alsabti, S. Ranka, V. Singh. An efficient k-means clustering algorithm // Electrical Engineering and Computer Science. — 1997. — V. 43.
  4. J. Alijagić. Application of multivariate statistical methods and artificial neural network for separation natural background and influence of mining and metallurgy activities on distribution of chemical elements in the Stavnja valley (Bosnia and Herzegovina). — University of Nova Gorica, 2013. — PhD thesis.
  5. J. S. Bergstra, B. Rémi, B. Yoshua, K. Balázs. Algorithms for hyper-parameter optimization / Advances in neural information processing systems. — 2011. — P. 2546–2554.
  6. J. H. Friedman. Greedy function approximation: a gradient boosting machine // Annals of statistics. — 2001. — V. 29, no. 5. — P. 1189–1232. — MathSciNet: MR1873328.
  7. X. Glorot, X. Bengio. Understanding the difficulty of training deep feedforward neural networks // Aistats. — 2010. — V. 9. — P. 249–256.
  8. H. Harmens, Mills G. (eds.). Air Pollution: Deposition to and impacts on vegetation in (South-East Europe, Caucasus, Central Asia (EECCA/SEE) and South-East Asia. — 2014. — Report prepared by ICP Vegetation, March 2014. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor. UK.
  9. T. Hastie. Trees Bagging Random Forests and Boosting. — Stanford University, 2003.
  10. V. Nair, G. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines / Proc. 27 th Int. Conference on Machine Learning. — 2010. — P. 807–814. — Eds J. Furnkranz and Th. Joachims. — Haifa, Israel.
  11. S. Nickel, A. Hertel, R. Pesch, W. Schröder, E. Steinnes, H. Thelle Uggerud. Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990–2010 throughout Norway by multivariate generalized linear models and geostatistics // Atmospheric Environment. — 2014. — V. 99. — P. 85–93. — DOI: 10.1016/j.atmosenv.2014.09.059. — ads: 2014AtmEn..99...85N.
  12. W. G. Rees. Physical Principles of Remote Sensing. — Cambridge, UK: Cambridge University Press, 2001.
  13. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting // Journal of Machine Learning Research. — 2014. — V. 15. — P. 1929–1958. — MathSciNet: MR3231592.
  14. T. Tieleman, G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude // COURSERA: Neural networks for machine learning. — 2012. — V. 4, no. 2. — P. 26–31.
  15. ASTER L1T Radiance. — Electronic resource. — https://explorer.earthengine.google.com/#detail/ASTER%2FAST_L1T_003. — accessed: 23.04.2018.
  16. Landsat 7 Collection 1 Tier 1 and Real-Time data Raw Scenes. — Electronic resource. — https://explorer.earthengine.google.com/#detail/LANDSAT%2FLE07%2FC01%2FT1_RT. — accessed: 23.04.2018.
  17. MCD43A4.006 MODIS Nadir BRDF-Adjusted Reflectance Daily 500m. — Electronic resource. — https://explorer.earthengine.google.com/#detail/MODIS%2F006%2FMCD43A4. — accessed: 23.04.2018.
  18. MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km. — Electronic resource. — https://explorer.earthengine.google.com/#detail/MODIS%2F006%2FMOD11A2. — accessed: 23.04.2018.
  19. PROBA-V C1 Top Of Canopy Daily Synthesis 333m. — Electronic resource. — https://explorer.earthengine.google.com/#detail/VITO%2FPROBAV%2FC1%2FS1_TOC_333M. — accessed: 23.04.2018.
  20. PROBA-V C0 Top Of Canopy Daily Synthesis at 100m resolution. — Electronic resource. — https://explorer.earthengine.google.com/#detail/VITO%2FPROBAV%2FS1_TOC_100M. — accessed: 23.04.2018.
  21. Sentinel-3 OLCI EFR Ocean and Land Color Instrument Earth Observation Full Resolution. — Electronic resource. — https://explorer.earthengine.google.com/#detail/COPERNICUS%2FS3%2FOLCI. — accessed: 23.04.2018.
  22. United Nations Economic Commission for Europe International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. — Electronic resource. — http://icpvegetation.ceh.ac.uk/. — accessed: 23.04.2018.
  23. VIIRS Nighttime Day/Night Band Composites Version 1. — Electronic resource. — https://explorer.earthengine.google.com/#detail/NOAA%2FVIIRS%2FDNB%2FMONTHLY_V1%2FVCMCFG. — accessed: 23.04.2018.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"