Features of the DNA kink motion in the asynchronous switching on and off of the constant and periodic fields

 pdf (11615K)  / Annotation

List of references:

  1. А. А. Гриневич, Л. В. Якушевич. О моделировании движения транскрипционного пузыря под действием постоянного торсионного момента // Биофизика. — 2016. — Т. 61, № 4. — С. 638–646.
    • A. A. Grinevich, L. V. Yakushevich. On the modeling of the motion of a transcription buble under constant torque // Biophysics. — 2016. — V. 61, no. 4. — P. 539–546. — DOI: 10.1134/S0006350916040126.
    • A. A. Grinevich, L. V. Yakushevich. O modelirovanii dvijeniya transkripcionnogo puzirya pod deistviem postoyannogo torsionnogo momenta // Biofizika. — 2016. — V. 61, no. 4. — P. 638–646. — Original Russian paper.
  2. Ф. К. Закирьянов, Л. В. Якушевич. Управление динамикой кинка модифицированного уравнения синус-Гордона внешним воздействием с меняющимися параметрами // Компьютерные исследования и моделирование. — 2013. — Т. 5, № 5. — С. 821–834. — DOI: 10.20537/2076-7633-2013-55-5-821-834
    • F. K. Zakiryanov, L. V. Yakushevich. Control of the dynamics of the kink of the modified sine-Gordon equation by the external exposure with varying parameters // Computer Research and Modeling. — 2013. — V. 5, no. 5. — P. 821–834. — in Russian. — DOI: 10.20537/2076-7633-2013-55-5-821-834
  3. Л. В. Якушевич, В. Н. Балашова, Ф. К. Закирьянов. О движении кинка ДНК под действием постоянного торсионного момента // Математическая биология и биоинформатика. — 2016. — Т. 11, № 1. — С. 81–90.
    • L. V. Yakushevich, V. N. Balashova, F. K. Zakiryanov. On the DNA kink motion under the action of constant torque // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 1. — P. 81–90. — in Russian. — DOI: 10.17537/2016.11.81.
  4. Л. В. Якушевич, Л. А. Краснобаева, А. В. Шаповалов, Н. Р. Кинтеро. Одно- и двухсолитонные решения уравнения синус-Гордона в приложении к ДНК // Биофизика. — 2005. — Т. 50, № 3. — С. 450–455.
    • L. V. Yakushevich. , Krasnobaeva L. A., Shapovalov A. V., Quintero N. R. One- and two-soliton solutions of the sine-Gordon equationas applied to DNA // Biophysics. — 2005. — V. 50, no. 3. — P. 404–409.
    • L. V. Yakushevich, L. A. Krasnobaeva, Shapovalov A. V. et al. Odno- i dvuhsolitonnie resheniya uravneniya sinus-Gordon v prilojenii v DNK // Biofizika. — 2005. — V. 50, no. 3. — P. 450–455. — Original Russian paper.
  5. Л. В. Якушевич, Л. А. Кpаcнобаева. Особенности динамки кинка в неоднородной ДНК // Биофизика. — 2008. — Т. 53, № 1. — С. 36–41.
    • L. V. Yakushevich, L. A. Krasnobaeva. Peculiar features of kink dynamics in inhomogeneous DNA // Biophysics. — 2008. — V. 53, no. 1. — P. 21–25. — DOI: 10.1134/S0006350908010041. — MathSciNet: MR2451388.
    • L. V. Yakushevich, L. A. Krasnobaeva. Osobennosti dinamiki kinka v neodnorodnoi DNK // Biofizika. — 2008. — V. 53, no. 1. — P. 36–41. — Original Russian paper.
  6. Л. В. Якушевич, Л. А. Кpаcнобаева. Вынужденные колебания оснований ДНК // Биофизика. — 2016. — Т. 61, № 2. — С. 286–296.
    • L. V. Yakushevich, L. A. Krasnobaeva. Forced Oscillations of DNA bases // Biophysics. — 2016. — V. 61, no. 1. — P. 286–296.
    • L. V. Yakushevich, L. A. Kpacnobaeva. Vinujdennie kolebaniya osnovanii DNK // Biofizika. — 2016. — V. 61, no. 2. — P. 286–296. — Original Russian paper.
  7. D. L. Beveridge, T. E. Cheatham, M. Mezei. The ABCs of molecular dynamics simulations on B-DNA // J. Biosci. — 2012. — V. 37, no. 3. — P. 379–397. — DOI: 10.1007/s12038-012-9222-6.
  8. M. Cadoni, R. De Leo, S. Demelio, G. Gaeta. Propagation of twist solitons in real DNA chains // Journal of Nonlinear Mathematical Physics. — 2010. — V. 17, no. 4. — P. 557–569. — DOI: 10.1142/S1402925110001069. — MathSciNet: MR2771192. — ads: 2010JNMP...17..557C.
  9. S. W. Englander, N. R. Kallenbach, Heeger A. J. et al. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations // Proceedings of the National Academy of Sciences of the United States of America. — 1980. — V. 77, no. 12. — P. 7222–7226. — DOI: 10.1073/pnas.77.12.7222. — ads: 1980PNAS...77.7222E.
  10. N. Foloppe, M. Guéroult, B. Hartmann. Simulating DNA by molecular dynamics: aims, methods, and validation // Methods Mol. Biol. — 2013. — V. 924. — P. 445–468. — DOI: 10.1007/978-1-62703-017-5_17.
  11. R. Galindo-Murillo, D. R. Roe, T. E. Cheatham. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC) // Biochim. Biophys. Acta. — 2015. — V. 1850, no. 5. — P. 1041–1058. — DOI: 10.1016/j.bbagen.2014.09.007.
  12. G. Gaeta. Solitons in the Yakushevich model of DNA beyond the contact approximation // Phys. Rev. E. — 2006. — V. 74, no. 2. — 021921. — DOI: 10.1103/PhysRevE.74.021921. — MathSciNet: MR2280413. — ads: 2006PhRvE..74b1921G.
  13. L. A. Krasnobaeva, L. V. Yakushevich. Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17) // Journal of Bioinformatics and Computational Biology. — 2015. — V. 13, no. 1. — 1540002. — 13 p. — DOI: 10.1142/S0219720015400028.
  14. D. R. Langley. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results // J. Biomol. Struct. Dyn. — 1998. — V. 16, no. 3. — P. 487–509. — DOI: 10.1080/07391102.1998.10508265.
  15. D. W. McLaughlin, A. C. Scott. Perturbation analysis of fluxion dynamics // Phys. Rev. A. — 1978. — V. 18, no. 4. — P. 1652–1680. — DOI: 10.1103/PhysRevA.18.1652. — ads: 1978PhRvA..18.1652M.
  16. V. Muto, P. S. Lomdahl, P. L. Christiansen. Two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation // Phys. Rev. A. — 1990. — V. 42, no. 12. — P. 7452–7458. — DOI: 10.1103/PhysRevA.42.7452. — ads: 1990PhRvA..42.7452M.
  17. M. Peyrard, A. R. Bishop. Statistical mechanics of a nonlinear model for DNA denaturation // Phys. Rev. Lett. — 1989. — V. 62, no. 23. — P. 2755–2758. — DOI: 10.1103/PhysRevLett.62.2755. — ads: 1989PhRvL..62.2755P.
  18. M. Peyrard. Nonlinear dynamics and statistical physics of DNA // Nonlinearity. — 2004. — V. 17, no. 2. — DOI: 10.1088/0951-7715/17/2/R01. — MathSciNet: MR2039047.
  19. M. Peyrard, Th. Dauxois. Can we model DNA at the mesoscale? // Physics of Life Reviews. — 2014. — V. 11, no. 2. — P. 173–175. — DOI: 10.1016/j.plrev.2014.03.008. — MathSciNet: MR3642602. — ads: 2014PhLRv..11..173P.
  20. S. Takeno, S. Homma. Topological Solitons and Modulated Structure of Bases in DNA Double Helices: A Dynamic Plane Base-Rotator Model // Prog. Theor. Phys. — 1983. — V. 70, no. 1. — P. 308–311. — DOI: 10.1143/PTP.70.308. — ads: 1983PThPh..70..308T.
  21. N. Peyrard M. Theodorakopoulos. Base pair openings and temperature dependence of DNA flexibility // Phys. Rev. Lett. — 2012. — V. 108, no. 7. — P. 078104. — ads: 2012PhRvL.108g8104T.
  22. L. V. Yakushevich. Nonlinear Physics of DNA. — Wiley, 2004.
  23. S. Yomosa. Soliton excitations in deoxyribonucleic acid (DNA) double helices // Phys. Rev. A. — 1983. — V. 27, no. 4. — P. 2120–2125. — DOI: 10.1103/PhysRevA.27.2120. — MathSciNet: MR0700064. — ads: 1983PhRvA..27.2120Y.
  24. F. K. Zakiryanov, N. R. Daukaev, L. V. Yakushevich. Conformational transitions control in polynucleotide chains by external frequency-modulated exposure // Materials Science Forum. — 2016. — V. 845. — P. 199–202. — DOI: 10.4028/www.scientific.net/MSF.845.199.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"