All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
pdf (24733K)
/ Annotation
List of references:
- Многоуровневое математическое моделирование возникновения и роста опухоли в ткани эпителия // Компьютерные исследования и моделирование. — 2014. — Т. 6, № 4. — С. 585–604. — DOI: 10.20537/2076-7633-2014-6-4-585-604
- Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue // Computer Research and Modeling. — 2014. — V. 6, no. 4. — P. 585–604. — in Russian. — DOI: 10.20537/2076-7633-2014-6-4-585-604 , , .
, , . - Синхронизация циркадианных ритмов в масштабах гена, клетки и всего организма // Компьютерные исследования и моделирование. — 2013. — Т. 5, № 2. — С. 255–270. — DOI: 10.20537/2076-7633-2013-5-2-255-270
- Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism // Computer Research and Modelling. — 2013. — V. 5, no. 2. — P. 255–270. — in Russian. — DOI: 10.20537/2076-7633-2013-5-2-255-270 , .
, . - Моделирование роста опухоли эпителиальных тканей с использованием алгоритмов клеточных автоматов // Альманах клинической медицины. — 2008. — Т. 17, № 1. — С. 179–182.
- Modeling of tumor growth of epithelial tissues using cellular automata algorithms // Almanac of clinical medicine. — 2008. — V. 17, no. 1. — P. 179–182. — in Russian. , , .
, , . - Влияние случайной подвижности злокачественных клеток на устойчивость фронта опухоли // Компьютерные исследования и моделирование. — 2009. — Т. 1, № 2. — С. 225–232. — DOI: 10.20537/2076-7633-2009-1-2-225-232
- Influence of random malignant cell motility on growing tumor front stability // Computer Research and Modelling. — 2009. — V. 1, no. 2. — P. 225–232. — in Russian. — DOI: 10.20537/2076-7633-2009-1-2-225-232 , .
, . - Инвазия опухолевых эпителиальных клеток: механизмы и проявления // Acta Naturae. — 2015. — Т. 7, № 2. — С. 18–31.
- Cancer Invasion: Patterns and Mechanisms // Acta Naturae. — 2015. — V. 7, no. 2. — P. 18–31. — in Russian. , , , , .
, , , , . - Исследование влияния антиангиогенной монотерапии на прогрессию гетерогенной опухоли с помощью методов математического моделирования // Компьютерные исследования и моделирование. — 2017. — Т. 9, № 3. — С. 487–501. — DOI: 10.20537/2076-7633-2017-9-3-487-501
- Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression // Computer Research and Modelling. — 2017. — V. 9, no. 3. — P. 487–501. — in Russian. — DOI: 10.20537/2076-7633-2017-9-3-487-501. , .
, . - Математическое моделирование и биомеханический подход к описанию развития, диагностики и лечения онкологических заболеваний // Российский журнал биомеханики. — 2010. — Т. 14, № 4. — С. 42–69.
- Mathematical modelling and biomechanical approach to describe the development, the diagnostics, and the treatment of oncological diseases // Russian Journal of Biomechanics. — 2010. — V. 14, no. 4. — P. 42–69. — in Russian. .
. - A cellular automaton model for tumour growth in inhomogeneous environment // J. Theor. Biol. — 2003. — V. 225. — P. 257–274. — DOI: 10.1016/S0022-5193(03)00244-3. — MathSciNet: MR2077392. , , .
- β1 integrin function in vivo: Adhesion, migration and more // Cancer and Metastasis Reviews. — 2005. — V. 24, no. 3. — P. 403–411. — DOI: 10.1007/s10555-005-5132-5. , .
- Chemo-elastic modeling of invasive carcinoma development accompanied by oncogenic epithelial-mesenchymal transition // AIP Conference Proceedings. — 2017. — V. 1882. — 020008. — DOI: 10.1063/1.5001587. — MathSciNet: MR3705957. , , .
- Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue // J. Biol. Phys. — 2016. — V. 42, no. 1. — P. 107–132. — DOI: 10.1007/s10867-015-9395-y. , , , .
- Chemo-mechanical modeling of tumor growth in elastic epithelial tissue // AIP Conference Proceedings. — 2016. — V. 1760. — 020007. — DOI: 10.1063/1.4960226. , , .
- Multiscale modeling of cancer: An integrated experimental and mathematical modeling approach. — Cambridge University Press, 2010. — P. 278. , .
- Multiscale cancer modeling. — CRC Press, 2010. — P. 484. , .
- Multiscale cancer modeling // Annu. Rev. Biomed. Eng. — 2011. — V. 13. — P. 127–155. — DOI: 10.1146/annurev-bioeng-071910-124729. — MathSciNet: MR2504081. , , , .
- Invasive and drug resistant expression profile of different morphological structures of breast tumors // Neoplasma. — 2015. — V. 62, no. 3. — P. 405–411. — DOI: 10.4149/neo_2015_041. , , , , , , , , , .
- Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness // Oncotarget. — 2017. — V. 8, no. 37. — P. 61163–61180. — DOI: 10.18632/oncotarget.18022. , , , , , , , , , , , .
- Mathematical modelling of tumour growth and treatment // Complex System in Biomedicine. — 2006. — V. 26. — P. 71–108. — DOI: 10.1007/88-470-0396-2_3. — MathSciNet: MR2487998. , , .
- Two different mechanisms of planar cell intercalation leading to tissue elongation // Developmental Dynamics. — 2008. — V. 237. — P. 1826–1836. — DOI: 10.1002/dvdy.21609. , , .
- A hybrid model for tumour spheroid growth in vitro I: Theoretical development and early results // Math. Mod. Meth. Appl. Sci. — 2007. — V. 17. — P. 1773–1798. — DOI: 10.1142/S0218202507002479. — MathSciNet: MR2362764. , , .
- Molecular mechanisms of epithelial-mesenchymal transition // Nat. Rev. Mol. Cell Biol. — 2014. — V. 15, no. 3. — P. 178–196. — DOI: 10.1038/nrm3758. , , .
- Chromatin fiber allostery and the epigenetic code // J. Phys. Condens. Matter. — 2015. — V. 27. — 064114. — DOI: 10.1088/0953-8984/27/6/064114. — ads: 2015JPCM...27f4114L. , , , , , .
- A Cellular Automaton Model for Tumor Growth Simulation / 6th International Conference on PACBB. AISC. — 2012. — V. 154. — P. 147–155. , .
- Tumor growth modelling by cellular automata // Mathematics and Mechanics Complex Systems. — 2017. — V. 5, no. 3–4. — P. 239–259. — MathSciNet: MR3740254. , , , , , .
- Chemical and mechanical signaling in epithelial spreading // Phys. Biol. — 2012. — V. 9, no. 2. — P. 026009–026023. — DOI: 10.1088/1478-3975/9/2/026009. — ads: 2012PhBio...9b6009S. , .
- A multiphase model for three-dimensional tumor growth // New J. Phys. — 2013. — V. 15. — 015005. — DOI: 10.1088/1367-2630/15/1/015005. — MathSciNet: MR3128031. , , , , , , , .
- Tumorigenesis: it takes a village // Nat. Rev. Cancer. — 2015. — V. 8. — P. 473–483. — DOI: 10.1038/nrc3971. , .
- Initial steps of metastasis: Cell invasion and endothelial transmigration // Mutat. Res. — 2011. — V. 728. — P. 23–34. — DOI: 10.1016/j.mrrev.2011.05.002. , , .
- The role of signal relay in collective cell polarization // J. R. Soc. Interface. — 2011. — V. 8. — P. 1059–1063. — DOI: 10.1098/rsif.2011.0117. , , , .
- Molecular Mechanisms of Cancer. — Springer, 2007. — P. 645. .
- Reshaping nemato-elastic sheets // Eur. Phys. J. E Soft Matter. — 2015. — V. 38, no. 7. — P. 75. , .
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"
Copyright © 2009–2024 Institute of Computer Science