The key approaches and review of current researches on dynamics of structured and interacting populations

 pdf (460K)  / Annotation

List of references:

  1. А. И. Абакумов. Моделирование сообществ с учетом неопределенности данных // Сибирский экологический журнал. — 2001. — № 5. — С. 559–563.
    • A. I. Abakumov. Community modeling with data uncertainty // Sibirskiy ekologicheskiy zhurnal. — 2001. — no. 2. — P. 559–563. — in Russian.
  2. А. И. Абакумов. Управление и оптимизация в моделях эксплуатируемых популяций. — Владивосток: Дальнаука, 1993.
    • A. I. Abakumov. Management and Optimization in Models of Harvested Populations. — Vladivostok: Dal’nauka, 1993. — in Russian.
  3. А. И. Абакумов, Ю. Г. Израильский. Эффекты промыслового воздействия на рыбную популяцию // Математическая биология и биоинформатика. — 2016. — Т. 11, № 2. — С. 191–204. — DOI: 10.17537/2016.11.191.
    • A. I. Abakumov, Yu. G. Izrailsky. The harvesting effect on a fish population // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 2. — P. 191–204. — in Russian. — DOI: 10.17537/2016.11.191.
  4. А. И. Абакумов, Ю. Г. Израильский, Е. Я. Фрисман. Сложная динамика планктона в топографическом вихре // Математическая биология и биоинформатика. — 2015. — Т. 10, № 1. — С. 416–426. — DOI: 10/17537/2015.10.416 .
    • A. I. Abakumov, Yu. G. Izrailsky, E. Ya. Frisman. Complex Plankton Dynamics in a Topographic Eddy // Mathematical Biology and Bioinformatics. — 2015. — V. 10, no. 1. — P. 416–426. — in Russian. — DOI: 10.17537/2015.10.416.
  5. А. И. Абакумов, О. И. Ильин, Н. С. Иванко. Игровые задачи сбора урожая в биологическом сообществе // Математическая теория игр и ее приложения. — 2011. — Т. 3, № 2. — С. 3–17.
    • A. I. Abakumov, O. I. Il’in, N. S. Ivanko. Game problems of harvesting in a biological community // Automation and Remote Control. — 2011. — V. 3, no. 2. — P. 3–17. — in Russian. — MathSciNet: MR3519317.
  6. А. И. Абакумов, М. Г. Казакова. Пространственная модель сообщества видов // Дальневосточный математический журнал. — 2002. — Т. 3, № 1. — С. 102–107.
    • A. I. Abakumov, M. G. Kazakova. Spatial model of species community // Far Eastern Mathematical Journal. — 2002. — V. 3, no. 1. — P. 102–107. — in Russian. — Math-Net: Mi eng/dvmg121.
  7. Ю. М. Апонин, Е. А. Апонина. Иерархия моделей математической биологии и численно-аналитические методы их исследования // Математическая биология и биоинформатика. — 2007. — Т. 2, № 2. — С. 347–360.
    • Yu. M. Aponin, E. A. Aponina. Hierarchy of Models in Mathematical Biology and Numerically-analytical Methods of its Investigation // Math. Biol. Bioinf. — 2007. — V. 2, no. 2. — P. 347–360. — DOI: 10.17537/2007.2.347. — in Russian. — Math-Net: Mi eng/mbb28.
  8. В. В. Астахов, А. В. Шабунин, П. А. Стальмахов. Бифуркационные механизмы разрушения противофазной синхронизации хаоса в связанных системах с дискретным временем // Изв. вузов, «ПНД». — 2006. — Т. 14, № 6. — С. 100–111.
    • V. V. Astakhov, A. V. Shabunin, P. A. Stalmakhov. Bifurcational mechanisms of destruction of antiphase chaotic synchronization in coupled discrete-time systems // Izvestiya VUZ. Applied Nonlinear Dynamics. — 2006. — V. 14, no. 6. — P. 100–111. — in Russian.
  9. С. А. Астахов, Б. П. Безручко, Е. П. Селезнев, Д. А. Смирнов. Эволюция бассейнов притяжений аттракторов связанных систем с удвоением периода // Изв. вузов, «ПНД». — 1997. — Т. 5, № 2–3. — С. 87–99.
    • S. A. Astakhov, B. P. Bezruchko, E. P. Seleznev, D. A. Smirnov. Evolution of the attraction basins of systems coupled with a period doubling bifurcation // Izvestiya VUZ. Applied Nonlinear Dynamics. — 1997. — V. 5, no. 2–3. — P. 87–99. — in Russian.
  10. А. Д. Базыкин. Математическая биофизика взаимодействующих популяций. — М: Наука, 1985.
    • A. D. Bazykin. Mathematical biophysics of interacting populations. — Moscow: Nauka, 1985. — in Russian. — MathSciNet: MR0801544.
  11. А. Д. Базыкин. Нелинейная динамика взаимодействующих популяций. — М.–Ижевск: Ин-т компьют. исслед, 2003.
    • A. D. Bazykin. Nonlinear dynamics of interacting populations. — Moscow–Izhevsk: In-t kompyut. issled, 2003. — in Russian.
  12. А. Д. Базыкин, Г. С. Маркман. О диссипативных структурах в экологических системах / Факторы разнообразия в математической экологии и популяционной генетике. — Пущино: ОНТИ НЦБИ ФА СССР, 1980. — С. 135–148.
    • A. D. Bazykin, G. S. Markman. On Dissipative Structures in Ecological Systems / Diversity Factors in Mathematical Ecology and Population Genetics. — Pushchino: ONTI NTsBI FA SSSR, 1980. — P. 135–148. — in Russian.
  13. И. А. Башкирцева, П. В. Бояршинова, Т. В. Рязанова, Л. Б. Ряшко. Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва» // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 4. — С. 647–660. — DOI: 10.20537/2076-7633-2016-8-4-647-660
    • I. A. Bashkirtseva, P. V. Boyarshinova, T. V. Ryazanova, L. B. Ryashko. Analysis of noise-induced destruction of coexistence regimes in “prey–predator” population model // Computer Research and Modeling. — 2016. — V. 8, no. 4. — P. 647–660. — in Russian. — DOI: 10.20537/2076-7633-2016-8-4-647-660
  14. Б. П. Безручко, М. Д. Прохоров, Е. П. Селезнев. Виды колебаний, мультистабильность и бассейны притяжения аттракторов симметрично связанных систем с удвоением периода // Изв. вузов. «ПНД». — 2002. — Т. 10, № 4. — С. 47–68.
    • B. P. Bezruchko, M. D. Prokhorov, E. P. Seleznev. Types of oscillations, multistability and attraction basins of attractors for symmetrically coupled systems with a period doubling // Izvestiya VUZ. Applied Nonlinear Dynamics. — 2002. — V. 10, no. 4. — P. 47–68. — in Russian. — MathSciNet: MR1935817.
  15. Б. П. Безручко, Д. А. Смирнов. Математическое моделирование и хаотические временные ряды. — Саратов: ГосУНЦ «Колледж», 2005.
    • B. P. Bezruchko, D. A. Smirnov. Mathematical modeling and chaotic time series. — Saratov: GosUNTs “Kolledzh”, 2005. — in Russian.
  16. Н. В. Белотелов, Д. А. Саранча. Линейный анализ устойчивости двухуровневых систем с диффузией на экологическом примере // Биофизика. — 1984. — № 1. — С. 130–134.
    • N. V. Belotelov, D. A. Sarancha. Linear analysis of the stability of two-level systems with diffusion on an ecological example // Biophysics. — 1984. — no. 1. — P. 130–134. — in Russian.
  17. М. Бигон, Дж. Харпер, К. Таунсенд. Экология. Особи, популяции и сообщества. — В 2-х т. — М: Мир, 1989. — Т. 1.
    • M. Begon, J. L. Harper, C. R. Townsend. Ecology. Ecology: individuals, populations and communities. — Oxford: Blackwell Scientific Publications, 1986.
    • M. Begon, J. L. Harper, C. R. Townsend. Ekologiya. Osobi, populyatsii i soobshchestva. — V 2-kh t. — Moscow: Mir, 1989. — V. 1. — in Russian.
  18. В. Вольтерра. Математическая теория борьбы за существование. — М: Наука, 1976.
    • V. Volterra. Leçons sur la théorie mathématique de la lutte pour la vie. — Paris: Gauthier-Villars, 1931. — MathSciNet: MR1189803.
    • V. Volterra. Matematicheskaya teoriya borby za sushchestvovaniye. — Moscow: Nauka, 1976. — in Russian.
  19. Ф. Р. Гантмахер. Теория матриц. — М: Наука, 1988.
    • F. R. Gantmakher. Theory of matrices. — Moscow: Nauka, 1988. — in Russian. — MathSciNet: MR0986246.
  20. Г. Ф. Гаузе. Исследование над борьбой за существование в смешанных популяциях // Зоол. журн. — 1935. — Т. 14, № 2. — С. 243–270.
    • G. F. Gauze. Study of the struggle for existence in mixed populations // Russian Journal of Zoology. — 1935. — V. 14, no. 2. — P. 243–270. — in Russian.
  21. Г. Ф. Гаузе. Борьба за существование. — М.–Ижевск: Ин-т компьют. иссл, 2002.
    • G. F. Gauze. The struggle for existence. — Moscow–Izhevsk: In-t kompyut. issl, 2002. — in Russian.
  22. А. А. Гигаури, Ю. М. Свирижев. Распространение волн в системах «ресурс–потребитель» // ДАН СССР. — 1981. — Т. 258, № 5. — С. 1274–1276.
    • A. A. Gigauri, Yu. M. Svirizhev. Wave propagation in resourceconsumer systems // DAN SSSR. — 1981. — V. 258, no. 5. — P. 1274–1276. — in Russian.
  23. Е. Е. Гиричева. Динамические эффекты в системе «хищник–жертва» на примере планктонного сообщества // Информатика и системы управления. — 2014. — № 4. — С. 31–40.
    • E. E. Giricheva. Dynamic effects in a “predator–prey” model of the plankton community // Information science and control systems. — 2014. — no. 4. — P. 31–40. — in Russian.
  24. С. А. Гурли, Д. В. Х. Соу, Д. Х. Ву. Нелокальные уравнения реакции-диффузии с запаздыванием: биологические модели и нелинейная динамика // Современная математика. Фундаментальные направления. — 2003. — Т. 1. — С. 84–120.
    • S. A. Gourley, J. W.-H. So, J. H. Wu. Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics // Journal of Mathematical Sciences. — 2004. — V. 124. — P. 5119–5153. — DOI: 10.1023/B:JOTH.0000047249.39572.6d.
    • S. A. Gourley, J. W.-H. So, J. H. Wu. Nelokalnyye uravneniya reaktsii-diffuzii s zapazdyvaniyem: biologicheskiye modeli i nelineynaya dinamika // Sovremennaya matematika. Fundamentalnyye napravleniya. — 2003. — V. 1. — P. 84–120. — in Russian.
  25. О. Л. Жданова, Е. Я. Фрисман. Нелинейная динамика численности популяции: влияние усложнения возрастной структуры на сценарии перехода к хаосу // Журнал общей биологии. — 2011. — Т. 72, № 3. — С. 214–229.
    • O. L. Zhdanova, E. Ya. Frisman. Nonlinear population dynamics: Complication of the age structure influences transition to chaos scenarios // Biology Bulletin Reviews. — 2011. — V. 1, no. 5. — P. 395–406. — DOI: 10.1134/S2079086411050082.
    • O. L. Zhdanova, E. Ya. Frisman. Nelineynaya dinamika chislennosti populyatsii: vliyaniye uslozhneniya vozrastnoy struktury na stsenarii perekhoda k khaosu // Zhurnal obshchey biologii. — 2011. — V. 72, no. 3. — P. 214–229. — in Russian.
  26. О. Л. Жданова, А. Е. Кузин, Е. Я. Фрисман. Математическое моделирование динамики выживаемости самок северного морского котика Сallorhinus ursinus (Linnaeus, 1758) стада острова Тюлений // Биология моря. — 2017. — Т. 43, № 5. — С. 310–320.
    • O. L. Zhdanova, A. E. Kuzin, E. Ya. Frisman. Mathematical Modeling of the Variation in the Survival of Female Northern Fur Seals, Callorhinus ursinus (Linnaeus, 1758), on Tyuleniy Island // Russian Journal of Marine Biology. — 2017. — V. 43, no. 5. — P. 348–358. — DOI: 10.1134/S1063074017050121.
    • O. L. Zhdanova, A. E. Kuzin, E. Ya. Frisman. Matematicheskoe modelirovanie dinamiki vyizhivaemosti samok severnogo morskogo kotika Sallorhinus ursinus (Linnaeus, 1758) stada ostrova Tyuleniy // Biologiya morya. — 2017. — V. 43, no. 5. — P. 348–358. — in Russian.
  27. О. Л. Жданова, Е. Я. Фрисман. Влияние оптимального промысла на характер динамики численности и генетического состава двухвозрастной популяции // Известия РАН. Сер. биологическая. — 2013. — № 6. — С. 738–749.
    • O. L. Zhdanova, E. Ya. Frisman. The effect of optimal harvesting on the dynamics of size and genetic composition of a two-age population // Biology Bulletin. — 2014. — V. 41, no. 2. — P. 176–186. — DOI: 10.1134/S1062359013060162.
    • O. L. Zhdanova, E. Ya. Frisman. Vliyanie optimal’nogo promysla na kharacter dinamiki chislennosti i geneticheskogo sostava dvuhvozrastnoj populyacii // Izvestiya RAN. Ser. biologicheskaya. — 2013. — no. 6. — P. 738–749. — in Russian.
  28. О. Л. Жданова, Е. Я. Фрисман. Модельный анализ последствий оптимального промысла для эволюции двухвозрастной популяции // Информатика и системы управления. — 2014. — № 2. — С. 12–21.
    • O. L. Zhdanova, E. Ya. Frisman. Model analysis of the optimal harvesting effects on the evolution of a two-aged population // Informatics and Control Systems. — 2014. — no. 2. — P. 12–21. — in Russian.
  29. О. И. Ильин. Об оптимальной эксплуатации популяций рыб с возрастной структурой // Сибирский журнал индустриальной математики. — 2007. — Т. 10, № 3. — С. 43–57.
    • O. I. Il’in. On optimal exploitation of age structured fish populations // Siberian Journal of Industrial Mathematics. — 2007. — V. 10, no. 3. — P. 43–57. — in Russian. — Math-Net: Mi eng/sjim461.
  30. С. П. Капица. Общая теория роста человечества: сколько людей жило, живет и будет жить на Земле. — М: Наука, 1999.
    • S. P. Kapica. The general theory of the growth of mankind: How many people lived, lives and will live on Earth. — Moscow: Nauka, 1999. — in Russian.
  31. А. Н. Колмогоров. Качественное изучение математических моделей динамики популяций // Проблемы кибернетики. — 1972. — № 5. — С. 100–106.
    • A. N. Kolmogorov. Qualitative study of mathematical models of population dynamics // Problems of Cybernetics. — 1972. — no. 5. — P. 100–106. — in Russian. — MathSciNet: MR0299260.
  32. А. Н. Колмогоров, И. Г. Петровский, Н. С. Пискунов. Исследование уравнения диффузии, соединенной с возрастанием количества, и его применение к одной биологической проблеме // Бюл. МГУ, сер. «Математика и механика». — 1937. — Т. 6, № 1. — С. 1–26.
    • A. N. Kolmogorov, I. G. Petrovskij, N. S. Piskunov. Investigation of the diffusion equation, coupled with increasing quantity, and its application to a certain biological problem // Bulletin of the Moscow State University, series “Mathematics and Mechanics”. — 1937. — V. 6, no. 1. — P. 1–26. — in Russian.
  33. А. П. Кузнецов, С. П. Кузнецов. Критическая динамика решеток связанных отображений у порога хаоса // Известия высших учебных заведений. Радиофизика. — 1991. — Т. 34, № 10–12. — С. 1079–1115.
    • A. P. Kuznetsov, S. P. Kuznetsov. Critical dynamics of coupled-map lattices at onset of chaos (review) // Radiophysics and Quantum Electronics. — 1991. — V. 34, no. 10–12. — P. 845–868. — MathSciNet: MR1232727.
    • A. P. Kuznetsov, S. P. Kuznetsov. Kriticheskaya dinamika reshyotok svyazannyh otobrazhenij u poroga khaosa // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1991. — V. 34, no. 10–12. — P. 1079–1115. — in Russian. — MathSciNet: MR1186405. — ads: 1991RaF....34.1079K.
  34. С. П. Кузнецов. Универсальность и подобие связанных систем Фейгенбаума // Известия высших учебных заведений. Радиофизика. — 1985. — Т. 27, № 8. — С. 991–1007.
    • S. P. Kuznetsov. Universality and scaling in the behavior of coupled Feigenbaum systems // Radiophysics and Quantum Electronics. — 1985. — V. 28, no. 8. — P. 681–695. — DOI: 10.1007/BF01035195. — MathSciNet: MR0814000.
    • S. P. Kuznetsov. Universal’nost’ i podobie svyazannyh system Feigenbauma // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1985. — V. 27, no. 8. — P. 991–1007. — in Russian. — ads: 1985RaF....28..991K.
  35. С. П. Кузнецов, А. С. Пиковский. Переход от симметричного к несимметричному режиму хаотической динамики в системе диссипативно связанных рекуррентных отображений // Известия высших учебных заведений. Радиофизика. — 1989. — Т. 32, № 1. — С. 49–54.
    • S. P. Kuznetsov, A. S. Pikovskii. Transition from a symmetric to a nonsymmetric regime under conditions of randomness dynamics in a system of dissipatively coupled recurrence mappings // Radiophysics and Quantum Electronics. — 1989. — V. 32, no. 1. — P. 41–45. — DOI: 10.1007/BF01039046. — MathSciNet: MR0993869.
    • S. P. Kuznetsov, A. S. Pikovskii. Perehod ot simmetrichnogo k nesimmetrichnomu rezhimu khaoticheskoj dinamiki v sisteme dissipativno svyazannyh rekkurentnyh otobrazhenij // Izvestiya vysshyh uchebnyh zavedenij. Radiofizika. — 1989. — V. 32, no. 1. — P. 49–54. — in Russian.
  36. М. П. Кулаков. Об одной модели миграционно связанных популяций с дальнодействующими взаимодействиями // Региональные проблемы. — 2018. — Т. 21, № 2. — С. 52–60.
    • M. P. Kulakov. On a model of populations coupled by migration with long-range interactions // Regional Problems. — 2018. — V. 21, no. 2. — P. 52–60. — in Russian. — DOI: 10.31433/1605-220X-2018-21-2-52-60.
  37. М. П. Кулаков, Г. П. Неверова, Е. Я. Фрисман. Мультистабильность в моделях динамики миграционно-связанных популяций с возрастной структурой // Нелинейная динамика. — 2014. — Т. 10, № 4. — С. 407–425.
    • M. P. Kulakov, G. P. Neverova, E. Ya. Frisman. Multistability in dynamic models of migration coupled populations with an age structure // Rus. J. Nonlin. Dyn. — 2014. — V. 10, no. 4. — P. 407–425. — in Russian.
  38. М. П. Кулаков, Е. Я. Фрисман. Кластеризация и химеры в модели пространственно-временной динамики популяций с возрастной структурой // Нелинейная динамика. — 2018. — Т. 14, № 1. — С. 13–31.
    • M. P. Kulakov, E. Ya. Frisman. Clustering and chimeras in the model of the spatial-temporal dynamics of agestructured populations // Rus. J. Nonlin. Dyn. — 2018. — V. 14, no. 1. — P. 13–31. — in Russian. — MathSciNet: MR3789123.
  39. Е. В. Ласт, С. П. Луппов, Е. Я. Фрисман. Динамическая неустойчивость в математической модели динамики численности популяций лососевых видов рыб // Дальневосточный математический журнал. — 2001. — Т. 2, № 1. — С. 114–125.
    • E. V. Last, S. P. Luppov, E. Ya. Frisman. Dynamic instability in the mathematical model of population dynamics of salmon species // Far Eastern Mathematical Journal. — 2001. — V. 2, no. 1. — P. 114–125. — in Russian. — Math-Net: Mi eng/dvmg96.
  40. Ч. Ли. Введение в популяционную генетику. — М: Мир, 1978.
    • First course in population genetics. — Pacific Grove, California, USA: Boxwood Press, 1976. — Li C. C., ed.
    • Ch. Li. Vvedenie v populyacionnuyu genetiku. — Moscow: Mir, 1978. — in Russian.
  41. Д. О. Логофет. Способна ли миграция стабилизировать экосистему? (Математический аспект) // Журнал общей биологии. — 1978. — Т. 39. — С. 123–129.
    • D. O. Logofet. Is migration able to stabilize the ecosystem? (Mathematical Aspect) // Journal of General Biology. — 1978. — V. 39. — P. 123–129. — in Russian.
  42. Д. О. Логофет, И. Н. Белова. Неотрицательные матрицы как инструмент моделирования динамики популяций: классические модели и современные обобщения // Фундам. и прикл. математ. — 2007. — Т. 13, № 4. — С. 145–164.
    • D. O. Logofet, I. N. Belova. Non-negative matrices as a tool for modeling population dynamics: classical models and modern generalizations // Fundamental and applied mathematics. — 2007. — V. 13, no. 4. — P. 145–164. — in Russian. — Math-Net: Mi eng/fpm1068. — MathSciNet: MR2366241.
  43. Д. О. Логофет, И. Н. Белова, Е. С. Казанцева, В. Г. Онипченко. Ценопопуляция незабудочника кавказского (Eritrichium caucasicum) как объект математического моделирования. I. Граф жизненного цикла и неавтономная матричная модель // Журнал общей биологии. — 2017. — Т. 78, № 1. — С. 56–66.
    • D. O. Logofet, I. N. Belova, E. S. Kazantseva, V. G. Onipchenko. Local population of Eritrichium caucasicum as an object of mathematical modelling. I. Life cycle graph and a nonautonomous matrix model // Biology Bulletin Reviews. — 2017. — V. 7, no. 5. — P. 415–427. — DOI: 10.1134/S207908641705005X.
    • D. O. Logofet, I. N. Belova, E. S. Kazantseva, V. G. Onipchenko. Cenopopulyaciya nezabudochnika kavkazskogo (Eritrichium caucasicum) kak ob'ekt matematicheskogo modelirovaniya. I. Graf zhiznennogo cikla i neavtonomnaya matrichnaya model' // Zhurnal obshchei biologii. — 2017. — V. 78, no. 1. — P. 56–66. — in Russian.
  44. Д. О. Логофет, И. Н. Клочкова. Математика модели Лефковича: репродуктивный потенциал и асимптотические циклы // Мат. моделирование. — 2002. — Т. 14, № 10. — С. 116–126.
    • D. O. Logofet, I. N. Klochkova. The mathematics of the Lefkovich model: the reproductive potential and asymptotic cycles // Mathematical modeling. — 2002. — V. 14, no. 10. — P. 116–126. — in Russian. — Math-Net: Mi eng/mm545. — MathSciNet: MR1989787.
  45. Д. О. Логофет, Н. Г. Уланова, И. Н. Белова. Поливариантный онтогенез у вейников: новые модели и новые открытия // Журнал общей биологии. — 2015. — Т. 76, № 6. — С. 438–460.
    • D. O. Logofet, N. G. Ulanova, I. N. Belova. Polyvariant ontogeny in woodreeds: novel models and new discoveries // Biology Bulletin Reviews. — 2016. — V. 6, no. 5. — P. 365–385. — DOI: 10.1134/S2079086416050042.
    • D. O. Logofet, N. G. Ulanova, I. N. Belova. Polivariantnyj ontogenez u vejnikov: novye modeli i novye otkrytiya // Zhurnal obshchei biologii. — 2015. — V. 76, no. 6. — P. 438–460. — in Russian.
  46. Т. Мальтус. Опыт о законе народонаселения. — М: Директмедиа Паблишинг, 2008.
    • An Essay on the Principle of Population. — London: J. Johnson, St. Paul’s Church-Yard, 1798. — Malthus T., ed.
    • T. Mal'tus. Opyt o zakone narodonaseleniya. — Moscow: Directmedia Publishing, 2008. — in Russian.
  47. А. Б. Медвинский, С. В. Петровский, И. А. Тихонова, Д. А. Тихонов, Б. Л. Ли, Э. Вентурино, Х. Мальхё, Г. Р. Иваницкий. Формирование пространственно-временных структур, фракталы и хаос в концептуальных экологических моделях на примере динамики взаимодействующих популяций планктона и рыбы // Успехи физических наук. — 2002. — Т. 172, № 1. — С. 31–66. — DOI: 10.1070/PU2002v045n01ABEH000980 .
    • A. B. Medvinskii, S. V. Petrovskii, I. A. Tikhonova, D. A. Tikhonov, B. L. Li, E. Venturino, H. Malchow, G. R. Ivanitskii. Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics // Phys. Usp. — 2002. — V. 172, no. 1. — P. 27–57. — in Russian. — DOI: 10.1070/PU2002v045n01ABEH000980. — ads: 2002PhyU...45...27M.
  48. Г. П. Неверова, А. И. Абакумов, Е. Я. Фрисман. Влияние промыслового изъятия на режимы динамики лимитированной популяции: результаты моделирования и численного исследования // Математическая биология и биоинформатика. — 2016. — Т. 11, № 1. — С. 1–13. — DOI: 10.17537/2016.11.1 .
    • G. P. Neverova, A. I. Abakumov, E. Ya. Frisman. Dynamic modes of exploited limited population: results of modeling and numerical study // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 1. — P. 1–13. — in Russian. — DOI: 10.17537/2016.11.1.
  49. Г. П. Неверова, А. И. Абакумов, Е. Я. Фрисман. Режимы динамики лимитированной структурированной популяции при избирательном промысле // Математическая биология и биоинформатика. — 2017. — Т. 12. — С. 327–342. — DOI: 10.17537/2017.12.327.
    • G. P. Neverova, A. I. Abakumov, E. Ya. Frisman. Dynamic Modes of Limited Structured Population under Age Specific Harvest // Mathematical Biology and Bioinformatics. — 2017. — V. 12, no. 2. — P. 327–342. — in Russian. — DOI: 10.17537/2017.12.327.
  50. Г. П. Неверова, О. А. Жигальский, Н. И. Марков, Е. Я. Фрисман. Сравнение пространственновременной динамики промысловых видов животных, обитающих на территориях Среднего Приамурья и Свердловской области // Региональные проблемы. — 2015. — Т. 18, № 1. — С. 26–30.
    • G. P. Neverova, O. A. Zhigalsky, N. I. Markov, E. Ya. Frisman. Comparison of the spatial-temporal dynamics of commercial species of animals inhabiting the Middle Amur Region and the Sverdlovsk Region // Regional Problems. — 2015. — V. 18, no. 1. — P. 26–30. — in Russian.
  51. Г. П. Неверова, Е. Я. Фрисман. Сравнительный анализ влияния различных типов плотностной регуляции на динамику численности структурированных популяций // Информатика и системы управления. — 2015. — Т. 43, № 1. — С. 41–53.
    • G. P. Neverova, E. Ya. Frisman. Comparative analysis of the influence of various types of density regulation on the dynamics of the number of structured populations // Information Science and Control Systems. — 2015. — V. 43, no. 1. — P. 41–53. — in Russian.
  52. Л. В. Недорезов, В. Л. Неклюдова. Непрерывно-дискретные модели динамики численности двух возрастной популяции // Сибирский экологический журнал. — 1999. — Т. 4. — С. 371–375.
    • L. V. Nedorezov, V. L. Neklyudova. A Continuous-discrete models of time course of the number of a two age population // Sibirskiy ekologicheskiy zhurnal. — 1999. — V. 4. — P. 371–375. — in Russian.
  53. Л. В. Недорезов, Ю. В. Утюпин. Дискретно-непрерывная модель динамики численности двухполой популяции // Сибирский математический журнал. — 1999. — Т. 44, № 3. — С. 650–659.
    • L. V. Nedorezov, Yu. V. Utyupin. Discrete-continuous model of the dynamics of the population of a bisexual population // Siberian Mathematical Journal. — 1999. — V. 44, no. 3. — P. 650–659. — in Russian. — Math-Net: Mi eng/smj1203. — MathSciNet: MR1984709.
  54. Л. В. Недорезов. Лекции по математической экологии. — Новосибирск: Сибирский хронограф, 1997.
    • Nedorezov L. V.. Lectures on mathematical ecology. — Novosibirsk: Sibirskiy khronograf, 1997. — in Russian.
  55. Е. А. Новиков, В. В. Панов, М. П. Мошкин. Плотностно-зависимые механизмы регуляции численности красной полевки (Myodes rutilus) в оптимальных и суботимальных местообитаниях юга Западной Сибири // Журн. общей биол. — 2012. — Т. 73, № 1. — С. 49–58.
    • E. A. Novikov, V. V. Panov, M. P. Moshkin. Density-dependent regulation in populations of northern red-backed voles (Myodes Rutilus) in optimal and suboptimal habitats of southwest Siberia // Zhurnal Obshchei Biologii. — 2012. — V. 73, no. 1. — P. 49–58. — in Russian.
  56. Р. Примак. Основы сохранения биоразнообразия. — М: Изд-во науч. и учебн.-методич. центра, 2002.
    • R. B. Primack. An Introduction to Conservation Biology. — Moscow: Izd-vo nauch. i uchebn.-metodich. tsentra, 2002. — in Russian.
  57. В. Н. Разжевайкин. О возникновении стационарных диссипативных структур в системе типа «хищник–жерва» / Автоволновые процессы в системах с диффузией. — Горький: Горьковский ун-т, 1981. — С. 243–249.
    • V. N. Razhevaykin. On the origin of stationary dissipative structures in a “predator–prey” type system / Avtovolnovyye protsessy v sistemakh s diffuziyey. — Gor'’kiy: Gor’kovskiy un-t, 1981. — P. 243–249. — in Russian.
  58. В. А. Ратнер. Математическая популяционная генетика. — Новосибирск: Наука. Сиб. отд-ние, 1977.
    • V. A. Ratner. Mathematical Population Genetics. — Novosibirsk: Nauka. Sib. otd-niye, 1977. — in Russian.
  59. О. Л. Ревуцкая, Г. П. Неверова, М. П. Кулаков, Е. Я. Фрисман. Модель динамики численности двухвозрастной популяции: устойчивость, мультистабильность и хаос // Нелинейная динамика. — 2016. — Т. 12, № 4. — С. 591–603.
    • O. L. Revutskaya, G. P. Neverova, M. P. Kulakov, E. Ya. Frisman. Model of age-structured population dynamics: stability, multistability, and chaos // Russian Journal of Nonlinear Dynamics. — 2016. — V. 12, no. 4. — P. 591–603. — in Russian. — MathSciNet: MR3622588.
  60. О. Л. Ревуцкая, Г. П. Неверова, Е. Я. Фрисман. Влияние промыслового изъятия на динамику популяций с возрастной и половой структурой // Математическая биология и биоинформатика. — 2018. — Т. 13, № 1. — С. 270–289.
    • O. L. Revutskaya, G. P. Neverova, E. Ya. Frisman. Influence of Harvest on the Dynamics of Populations with Age and Sex Structures // Mathematical Biology and Bioinformatics. — 2018. — V. 13, no. 1. — P. 270–289. — in Russian. — DOI: 10.17537/2018.13.270.
  61. О. Л. Ревуцкая, Е. Я. Фрисман. Влияние равновесного промысла на сценарии развития двухвозрастной популяции // Информатика и системы управления. — 2017. — № 3. — С. 36–48.
    • O. L. Revutskaya, E. Ya. Frisman. Influence of equilibrium fishing on the scenario of development of a two-aged population // Information Science and Control Systems. — 2017. — no. 3. — P. 36–48. — in Russian.
  62. У. Е. Рикер. Методы оценки и интерпретации биологических показателей популяций рыб. — М: Пищ. пром-ть, 1979.
    • W. E. Ricker. Methods for assessing and interpreting the biological parameters of fish populations. — Moscow: Pishch. prom-t’, 1979. — in Russian.
  63. Г. С. Розенберг. Модели в фитоценологии. — М: Наука, 1984.
    • G. S. Rosenberg. Models in phytocenology. — Moscow: Nauka, 1984. — in Russian.
  64. Ю. М. Свирежев, Д. О. Логофет. Устойчивость биологических сообществ. — М: Наука, 1978.
    • Yu. M. Svirezhev, D. O. Logofet. Stability of biological communities. — Moscow: Nauka, 1978. — in Russian. — MathSciNet: MR0723326.
  65. Ю. М. Свирижев. Нелинейные волны, диссипативные структуры и катастрофы в экологии. — М: Наука, 1987.
    • Yu. M. Svirizhev. Nonlinear waves, dissipative structures and catastrophes in ecology. — Moscow: Nauka, 1987. — in Russian. — MathSciNet: MR1024541.
  66. Ю. М. Свирижев, А. А. Гигаури, В. Н. Разжевайкин. Волны в экологии / Нелинейные волны с самоорганизацией. — М: Наука, 1983. — С. 32–47.
    • Yu. M. Svirizhev. Waves in ecology / Nonlinear waves with self-organization. — Moscow: Nauka, 1983. — P. 32–47. — in Russian.
  67. Е. И. Скалецкая, Е. Я. Фрисман, А. П. Шапиро. Дискретные модели динамики численности и оптимизация промысла. — M: Наука, 1979.
    • E. I. Skaletskaya, E. Ya. Frisman, A. P. Shapiro. Discrete models of population dynamics and harvest optimization. — Moscow: Nauka, 1979. — in Russian.
  68. А. Г. Топаж, А. В. Абрамова, С. Е. Толстопятов. Дискретные модели популяционной динамики: достоинства, проблемы и обоснование // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 2. — С. 267–284. — DOI: 10.20537/2076-7633-2016-8-2-267-284
    • A. G. Topaj, A. V. Abramova, S. E. Tolstopyatov. Discrete Models in Population Dynamics: Advantages, Problems, and Justification // Computer Research and Modeling. — 2016. — V. 8, no. 2. — P. 267–284. — in Russian. — DOI: 10.20537/2076-7633-2016-8-2-267-284
  69. А. В. Тузинкевич. Интегральные модели пространственно-временной динамики экосистем. — Владивосток: ИАПУ ДВО АН СССР, 1989.
    • A. V. Tuzinkevich. Integral models of spatiotemporal dynamics of ecosystems. — Vladivostok: IAPU DVO AN SSSR, 1989. — in Russian. — MathSciNet: MR1082386.
  70. Е. Я. Фрисман, Е. В. Ласт. Нелинейные связи в популяционной динамике, связанные с возрастной структурой и влиянием промысла // Известия РАН. Серия биологическая. — 2005. — № 5. — С. 517–530.
    • E. Ya. Frisman, E. V. Last. Nonlinear effects on population dynamics related to age structure and fishery impact // Biology Bulletin. — 2005. — V. 32, no. 5. — P. 425–437. — DOI: 10.1007/s10525-005-0120-4.
    • E. Ya. Frisman, E. V. Last. Nelineynyye svyazi v populyatsionnoy dinamike, svyazannyye s vozrastnoy strukturoy i vliyaniyem promysla // Izvestiya RAN. Seriya biologicheskaya. — 2005. — V. 5, no. 5. — P. 517–530. — in Russian.
  71. Е. Я. Фрисман. Динамика генов в цепочке генов популяций / Математические модели популяций. — Владивосток: Дальнаука, 1979. — С. 123–131.
    • E. Ya. Frisman. Dynamics of genes in the gene chain / Mathematical models of populations. — Vladivostok: Dal'nauka, 1979. — P. 123–131. — in Russian. — ads: 1979eops.book.....F.
  72. Е. Я. Фрисман. Математические модели динамики численности локальной однородной популяции. — Владивосток: Дальрыбвтуз, 1996. — 59 с.
    • E. Ya. Frisman. Mathematical models of population dynamics of a local homogeneous population. — Vladivostok: Dal'rybvtuz, 1996. — in Russian.
  73. Е. Я. Фрисман. О механизме сохранения неравномерности в пространственном распределении особей / Математическое моделирование в экологии. — М: Наука, 1978. — С. 145–153.
    • E. Ya. Frisman. On the Mechanism of Preservation of Unevenness in the Spatial Distribution of Species / Mathematical Modeling in Ecology. — Moscow: Nauka, 1978. — P. 145–153. — in Russian.
  74. Е. Я. Фрисман. Странные аттракторы в простейших моделях динамики численности популяций с возрастной структурой // Доклады академии наук. — 1994. — Т. 338, № 2. — С. 282–286.
    • E. Ya. Frisman. Strange attractors in the simplest models of population dynamics with age structure // Doklady akademii nauk. — 1994. — V. 338, no. 2. — P. 282–286. — in Russian.
  75. Е. Я. Фрисман, Г. П. Неверова, М. П. Кулаков, О. А. Жигальский. Смена динамических режимов в популяциях видов с коротким жизненным циклом: результаты аналитического и численного исследования // Математическая биология и биоинформатика. — 2014. — Т. 9, № 2. — С. 414–429.
    • E. Ya. Frisman, G. P. Neverova, M. P. Kulakov, O. A. Zhigalskii. Changing the dynamic modes in populations with short life cycle: mathematical modeling and simulation // Mathematical Biology and Bioinformatics. — 2014. — V. 9, no. 2. — P. 414–429. — in Russian. — DOI: 10.17537/2014.9.414.
  76. Е. Я. Фрисман, М. П. Кулаков, О. Л. Ревуцкая. Классификация динамических математических моделей и наблюдаемых в них нелинейных эффектов // Региональные проблемы. — 2017. — Т. 20, № 4. — С. 17–29.
    • E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya. Classification of dynamic mathematical models and nonlinear effects // Regional problems. — 2017. — V. 20, no. 4. — P. 17–29. — in Russian.
  77. Е. Я. Фрисман, Е. В. Ласт, А. Н. Лазуткин. Механизмы и особенности сезонной и долговременной динамики популяций полевок Clethrionomys rufocanus и Cl. rutilus: количественный анализ и математическое моделирование // Вестн. Сев.-Вост. науч. центра Дальневост. отд. РАН. — 2010. — № 2. — С. 43–47.
    • E. Ya. Frisman, E. V. Last, A. N. Lazutkin. The Mechanisms and Peculiar Characters of Seasonal and Long-Term Dynamics of Voles Clethrionomys rufocanus and Cl. rutilus: a Quantitative Study and Mathematical Modeling // Bulletin of the North-East Scientific Center, Russia Academy of Sciences Far East Branch. — 2010. — no. 2. — P. 43–47. — in Russian.
  78. Е. Я. Фрисман, А. В. Тузинкевич, Н. П. Громова. «Пятнистость» пространственных структур популяции и происхождение видов как следствие динамической неустойчивости // Вестн. ДВО РАН. — 1996. — № 4. — С. 120–129.
    • E. Ya. Frisman, A. V. Tuzinkevich, Gromova N. P.. “Spot” of spatial structures of population and species origin due to dynamic instability // Vestn. DVO RAN. — 1996. — no. 4. — P. 120–129. — in Russian.
  79. Р. Хорн, Ч. Джонсон. Матричный анализ. — М: Мир, 1989.
    • R. A. Horn, C. R. Johnson. Matrix analysis. — New York: Cambridge university press, 1985. — MathSciNet: MR0832183.
    • R. Horn, C. H. Dzhonson. Matrichnyj analiz. — Moscow: Mir, 1989. — in Russian. — MathSciNet: MR1011253.
  80. А. П. Шапиро. К вопросу о циклах в возвратных последовательностях // Управление и информация. — Владивосток: ДВО АН СССР, 1972. — № 3. — С. 96–118.
    • A. P. Shapiro. On the question of cycles in recurrent sequences // Control and Information. — Vladivostok: DVO AN SSSR, 1972. — no. 3. — P. 96–118. — in Russian. — MathSciNet: MR1082381.
  81. А. П. Шапиро. Роль плотностной регуляции в возникновении колебаний численности многовозрастной популяции / Исследования по математической популяционной экологии. — Владивосток: ДВНЦ АН СССР, 1983. — С. 3–17.
    • A. P. Shapiro. The role of density regulation in the occurrence of fluctuations in the abundance of a multi-aged population / Studies in mathematical population ecology. — Vladivostok: DVNC AN SSSR, 1983. — P. 3–17. — in Russian.
  82. А. П. Шапиро, С. П. Луппов. Рекуррентные уравнения в теории популяционной биологии. — М: Наука, 1983.
    • A. P. Shapiro, S. P. Luppov. Recurrent equations in the theory of population biology. — Moscow: Nauka, 1983. — in Russian. — MathSciNet: MR0719884.
  83. И. А. Шепелев, T. Е. Вадивасова. Уединенные состояния в 2D-решетке бистабильных элементов при глобальном и близком к глобальному характере взаимодействия // Нелинейная динамика. — 2017. — Т. 13, № 3. — С. 317–329.
    • I. A. Shepelev, T. E. Vadivasova. Solitary states in a 2D lattice of bistable elements with global and close to global interaction // Rus. J. Nonlin. Dyn. — 2017. — V. 13, no. 3. — P. 317–329. — in Russian. — MathSciNet: MR3710555.
  84. R. Aanes, B. E. Saether, N. A. Oritsland. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation // Ecography. — 2000. — V. 23. — P. 437–443. — DOI: 10.1111/j.1600-0587.2000.tb00300.x.
  85. D. M. Abrams, S. H. Strogatz. Chimera states for coupled oscillators // Physical review letters. — 2003. — V. 93, no. 17. — P. 1–4.
  86. P. A. Abrams. When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect // Ecology Letters. — 2009. — V. 12, no. 5. — P. 462–474. — DOI: 10.1111/j.1461-0248.2009.01282.x.
  87. P. A. Abrams, H. Matsuda. The effect of adaptive change in the prey on the dynamics of an exploited predator population // Can. J. Fish Aquat. Sci. — 2005. — V. 62, no. 8. — P. 758–766. — DOI: 10.1139/f05-051.
  88. P. A. Abrams, C. Quince. The impact of mortality on predator population size and stability in systems with stage-structured prey // Theoretical Population Biology. — 2005. — V. 68, no. 4. — P. 253–266. — DOI: 10.1016/j.tpb.2005.05.004.
  89. A. S. Ackleh, P. De Leenheer. Discrete three-stage population model: persistence and global stability results // Journal of biological dynamics. — 2008. — V. 2, no. 4. — P. 415–427. — DOI: 10.1080/17513750802001812. — MathSciNet: MR2467296.
  90. M. Agarwal, S. Devi. A stage-structured predator-prey model with density-dependent maturation delay // International Journal of Biomathematics. — 2011. — V. 4, no. 3. — P. 289–312. — DOI: 10.1142/S1793524511001271. — MathSciNet: MR2845201.
  91. M. Agarwal, S. Devi. Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey // International Journal of Biomathematics. — 2010. — V. 3, no. 3. — P. 313–336. — DOI: 10.1142/S179352451000101X. — MathSciNet: MR2733280.
  92. H. N. Agiza, E. M. Elabbasy, H. El-Metwally, A. A. Elsadany. Chaotic dynamics of a discrete preypredator model with Holling type II // Nonlinear Analysis: Real World Applications. — 2009. — V. 10, no. 1. — P. 116–129. — DOI: 10.1016/j.nonrwa.2007.08.029. — MathSciNet: MR2451695.
  93. H. R. Akçakaya, M. A. Burgman, L. R. Ginzburg. Applied Population Ecology: Principles and Computer Exercises Using RAMAS EcoLab 2.0. — 1999.
  94. W. C. Allee. Animal Aggregations: A Study in General Sociology. — Chicago: University of Chicago Press, 1931.
  95. W. C. Allee, A. E. Emerson, O. Park, T. Park, K. P. Schmidt. Principles of Animal Ecology. — Philadelphia: Saunders, 1949.
  96. J. P. Allen. Mathematical models of species interactions in time and space // Amer. Natur. — 1975. — V. 109, no. 967. — P. 319–342. — DOI: 10.1086/283000. — ads: 1975wyef.book.....A.
  97. J. F. M. Al-Omari. The effect of state dependent delay and harvesting on a stage-structured predatorprey model // Applied Mathematics and Computation. — 2015. — V. 271. — P. 142–153. — DOI: 10.1016/j.amc.2015.08.119. — MathSciNet: MR3414793.
  98. M. Anazawa. Bottom-up derivation of discrete-time population models with the Allee effect // Theoretical Population Biology. — 2009. — V. 75. — P. 56–67. — DOI: 10.1016/j.tpb.2008.11.001.
  99. E. J. Bergman, P. F. Doherty, G. C. White, A. A. Holland. Density dependence in mule deer: a review of evidence // Wildlife Biology. — 2015. — V. 21, no. 1. — P. 18–29. — DOI: 10.2981/wlb.00012.
  100. R. J. H. Beverton, S. J. Holt. On the Dynamics of Exploited Fish Populations. — Caldwell (NJ): Blackburn Press, 2005.
  101. J. Bhattacharyya, S. Pal. Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator // Differential Equations and Dynamical Systems. — 2016. — V. 24, no. 3. — P. 345–366. — DOI: 10.1007/s12591-016-0299-5. — MathSciNet: MR3515048.
  102. J. Bhattacharyya, Pal S.. . The role of space in stage-structured cannibalism with harvesting of an adult predator // Computers & Mathematics with Applications. — 2013. — V. 66, no. 3. — P. 339–355. — DOI: 10.1016/j.camwa.2013.05.011. — MathSciNet: MR3073344.
  103. S. M. Bierman, J. P. Fairbairn, S. J. Petty, D. A. Elston, D. Tidhar, X. Lambin. Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.) // The American Naturalist. — 2006. — V. 167, no. 4. — P. 583–590. — DOI: 10.1086/501076.
  104. S. Biswas, M. Saifuddin, S. K. Sasmal, S. Samanta, N. Pal, F. Ababneh, J. Chattopadhyay. A delayed prey–predator system with prey subject to the strong Allee effect and disease // Nonlinear Dynamics. — 2016. — V. 3. — P. 1569–1594. — DOI: 10.1007/s11071-015-2589-9. — MathSciNet: MR3486588.
  105. P. J. Boer, J. Reddingius. Regulation and Stabilization Paradigms in Population Ecology. — Netherlands: Chapman & Hall Ltd, 1996.
  106. A. Brännström, D. J. T. Sumpter. The role of competition and clustering in population dynamics // Proc. R. Soc. B. — 2005. — V. 272. — P. 2065–2072. — DOI: 10.1098/rspb.2005.3185.
  107. F. Brauer, A. P. Soudack. Stability regions in predator-prey systems with constant-rate prey harvesting // Journal of Mathematical Biology. — 1979. — V. 8, no. 1. — P. 55–71. — DOI: 10.1007/BF00280586 . — MathSciNet: MR0657280.
  108. P. A. Braumann. Variable effort harvesting models in random environments: generalization to densitydependent noise intensities // Mathematical biosciences. — 2002. — V. 177. — P. 229–245. — DOI: 10.1016/S0025-5564(01)00110-9.
  109. C. J. Briggs, M. F. Hoopes. Stabilizing effects in spatial parasitoid–host and predator–prey models: areview // Theoretical Population Biology. — 2004. — V. 65. — P. 299–315. — DOI: 10.1016/j.tpb.2003.11.001.
  110. H. Caswell. Matrix Population Models: construction, analysis, and interpretation. — Massachusetts: Sinauer Associates Ink, 2001.
  111. K. Chakraborty, M. Chakraborty, T. K. Kar. Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay // Nonlinear Analysis: Hybrid Systems. — 2011. — V. 5, no. 4. — P. 613–625. — DOI: 10.1016/j.nahs.2011.05.004. — MathSciNet: MR2831465.
  112. K. Chakraborty, M. Chakraborty, T. K. Kar. Optimal control of harvest and bifurcation of a preypredator model with stage structure // Applied Mathematics and Computation. — 2011. — V. 217, no. 21. — P. 8778–8792. — DOI: 10.1016/j.amc.2011.03.139. — MathSciNet: MR2802286.
  113. K. Chakraborty, S. Jana, T. K. Kar. Global dynamics and bifurcation in a stage structured preypredator fishery model with harvesting // Applied Mathematics and Computation. — 2012. — V. 218, no. 18. — P. 9271–9290. — DOI: 10.1016/j.amc.2012.03.005. — MathSciNet: MR2923025.
  114. E. L. Charnov. Optimal foraging theory: The marginal value theorem // Theor. Pop. Biol. — 1976. — V. 9. — P. 129–136. — DOI: 10.1016/0040-5809(76)90040-X.
  115. B. Cid, F. M. Hilker, E. Liz. Harvest timing and its population dynamic consequences in a discrete single-species model // Mathematical biosciences. — 2014. — V. 248. — P. 78–87. — DOI: 10.1016/j.mbs.2013.12.003. — MathSciNet: MR3162644.
  116. H. N. Comins, M. P. Hassell, R. M. May. The spatial dynamics of host-parasitoid systems // J. Animal Ecology. — 1992. — V. 61. — P. 735–748. — DOI: 10.2307/5627.
  117. M. H. Cortez. Hydra effects in discrete-time models of stable communities // Journal of theoretical biology. — 2016. — V. 411. — P. 59–67. — DOI: 10.1016/j.jtbi.2016.09.021.
  118. F. Courchamp, T. Clutton-Brock, B. Grenfell. Inverse density dependence and the Allee effect // Trends in Ecology & Evolution. — 1999. — V. 14, no. 10. — P. 405–410. — DOI: 10.1016/s0169-5347(99)01683-3.
  119. R. Cressman, V. Křivan. Migration Dynamics for the Ideal Free Distribution // The American Naturalist. — 2006. — V. 168, no. 3. — P. 384–987. — DOI: 10.1086/506970.
  120. K. P. Das. A study of harvesting in a predator-prey model with disease in both populations // Mathematical Methods in the Applied Sciences. — 2016. — V. 39, no. 11. — P. 2853–2870. — DOI: 10.1002/mma.3735. — MathSciNet: MR3512735. — ads: 2016MMAS...39.2853D.
  121. K. C. De Carvalho, T. Tomé. Self-organized patterns of coexistence out of a predator-prey cellular automaton // International Journal of Modern Physics C. — 2006. — V. 17, no. 11. — P. 1647–1662. — DOI: 10.1142/S0129183106010005. — MathSciNet: MR2288659. — ads: 2006IJMPC..17.1647D.
  122. D. L. DeAngelis. Individual-based models and approaches in ecology: populations, communities and ecosystems. — CRC Press, 2018. — MathSciNet: MR3525082.
  123. B. Dennis, M. L. Taper. Density dependence in time series observations of natural-populations-estimation and testing // Ecological Monographs. — 1994. — V. 64, no. 2. — P. 205–224. — DOI: 10.2307/2937041.
  124. D. J. D. Earn, S. A. Levin, P. Rohani. Coherence and Conservation // Science. — 2000. — V. 290, no. 5495. — P. 1360–1364. — DOI: 10.1126/science.290.5495.1360. — ads: 2000Sci...290.1360E.
  125. B. Elmhagen, P. Hellström, A. Angerbjörn, J. Kindberg. Changes in Vole and Lemming Fluctuations in Northern Sweden 1960–2008 Revealed by Fox Dynamics // Annales Zoologici Fennici. — 2011. — V. 48, no. 3. — P. 167–179. — DOI: 10.5735/086.048.0305.
  126. G. B. Ermentrout, L. Edelstein-Keshet. Cellular automata approaches to biological modeling // Journal of theoretical Biology. — 1993. — V. 160, no. 1. — P. 97–133. — DOI: 10.1006/jtbi.1993.1007.
  127. P. Finley. All the fish in the sea: maximum sustainable yield and the failure of fisheries management. — University of Chicago Press, 2011.
  128. B. A. Fischer. The wave of advance of advantageous genes // Ann. Eugenica. — 1937. — V. 7. — P. 355–369. — DOI: 10.1111/j.1469-1809.1937.tb02153.x.
  129. E. Frisman, O. Zhdanova. Evolutionary Transition to Complex Population Dynamic Patterns in an Age-structured Population / Models of the Ecological Hierarchy: From Molecules to the Ecosphere. — Elsevier B.V, 2012. — P. 91–103.
  130. E. Y. Frisman, G. P. Neverova, M. P. Kulakov. Change of dynamic regimes in the population of species with short life cycles: Results of an analytical and numerical study // Ecological Complexity. — 2016. — V. 27. — P. 2–11. — DOI: 10.1016/j.ecocom.2016.02.001.
  131. E. Ya. Frisman. Differences in densities of individuals in population with uniform range // Ecol. Modelling. — 1980. — no. 8. — P. 345–354. — DOI: 10.1016/0304-3800(80)90046-0.
  132. J. M. Fryxell, P. Packer, K. McCann, E. J. Solberg, B. E. Sæther. Resource management cycles and the sustainability of harvested wildlife populations // Science. — 2010. — V. 328, no. 5980. — P. 903–906. — DOI: 10.1126/science.1185802. — MathSciNet: MR2662592. — ads: 2010Sci...328..903F.
  133. M. Gentle, A. Pople. Corrigendum to: Effectiveness of commercial harvesting in controlling feral-pig populations // Wildlife Research. — 2014. — V. 41, no. 3. — P. 275–275. — DOI: 10.1071/WR13100_CO.
  134. G. Giordano, F. Lutscher. Harvesting and predation of a sex- and age-structured population // Journal of Biological Dynamics. — 2011. — V. 5, no. 6. — P. 600–618. — DOI: 10.1080/17513758.2010.515689. — MathSciNet: MR2864345.
  135. S. A. Gourley, Y. Kuang. A stage structured predator-prey model and its dependence on maturation delay and death rate // Journal of mathematical Biology. — 2004. — V. 49, no. 2. — P. 188–200. — DOI: 10.1007/s00285-004-0278-2. — MathSciNet: MR2145690.
  136. R. Gras, D. Devaurs, A. Wozniak, A. Aspinall. An individual-based evolving preda-tor-prey ecosystem simulation using a fuzzy cognitive map as the behavior model // Artificial life. — 2009. — V. 15, no. 4. — P. 423–463. — DOI: 10.1162/artl.2009.Gras.012.
  137. Z. Gui, W. Ge. The effect of harvesting on a predator-prey system with stage structure // Ecological Modelling. — 2005. — V. 187, no. 2–3. — P. 329–340. — DOI: 10.1016/j.ecolmodel.2005.01.052.
  138. M. Gyllenberg, I. Hanski. Single-species metapopulation dynamics: a structured model // Theoretical Population Biology. — 1992. — V. 42. — P. 35–61. — DOI: 10.1016/0040-5809(92)90004-D. — MathSciNet: MR1181879.
  139. M. Gyllenberg, D. Preoteasa, P. Yan. Ecology and evolution of symbiosis in metapopulations // Journal of Biological Dynamics. — 2009. — V. 3, no. 1. — P. 39–57. — DOI: 10.1080/17513750802101935. — MathSciNet: MR2489624.
  140. M. Gyllenberg, G. Söderbacka, S. Ericson. Does migration stabilize local population dynamics? Analysis of a discrete matapopulation model // Math. Biosciences. — 1993. — V. 118. — P. 25–49. — DOI: 10.1016/0025-5564(93)90032-6. — MathSciNet: MR1244691.
  141. J. B. S. Haldane. A mathematical theory of natural and artificial selection // Mathematical Proceedings of the Cambridge Philosophical Society. — Cambridge University Press, 1930. — V. 26, no. 2. — P. 220 — 230. — DOI: 10.1017/S0305004100015450.
  142. P. E. Hansen. Leslie matrix models // Mathematical Population Studies. — 1989. — V. 2, no. 1. — P. 37–67. — DOI: 10.1080/08898488909525291. — MathSciNet: MR1008184.
  143. T. F. Hansen, N. P. Stenseth, H. Henttonen. Multiannual Vole Cycles and Population Regulation during Long Winters: An Analysis of Seasonal Density Dependence // The American Naturalist. — 1999. — V. 154. — P. 129–139. — DOI: 10.1086/303229.
  144. Ecology, Genetics and Evolution of Metapopulations. — London: Academic Press, 2004. — Hanski I., Gaggiotti O., eds.
  145. I. Hanski, M. Gyllenberg. Two general metapopulation models and the core-satellite species hypothesis // American Naturalist. — 1993. — V. 142, no. 1. — P. 17–41. — DOI: 10.1086/285527.
  146. I. Hanski, P. Turchin, E. Korpimäki, H. Henttonen. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos // Nature. — 1993. — V. 364. — P. 232–235. — DOI: 10.1038/364232a0. — ads: 1993Natur.364..232H.
  147. M. P. Hassell. Host-parasitoid population dynamics // Journal of Animal Ecology. — 2000. — V. 69. — P. 543–566. — DOI: 10.1046/j.1365-2656.2000.00445.x.
  148. M. P. Hassell. Density-dependence in single-species populations // J. Anim. Ecol. — 1975. — V. 44. — P. 283–295. — DOI: 10.2307/3863.
  149. M. P. Hassell, H. N. Comins, R. M. May. Stability and complexity in model ecosystems // Nature. — 1991. — V. 353. — P. 255–258. — DOI: 10.1038/353255a0. — ads: 1991Natur.353..255H.
  150. A. Hastings. Age dependent dispersal is not a simple process: Density dependence, stability, and chaos // Theor. Popul. Biol. — 1992. — V. 41, no. 3. — P. 388–400. — DOI: 10.1016/0040-5809(92)90036-S.
  151. D. B. Hayes. A biological reference point based on the Leslie matrix // Fish. Bull. — 2000. — V. 98. — P. 75–85.
  152. R. He, Z. Xiong, D. Hong, H. Yin. Analysis of a stochastic ratio-dependent one-predator and twomutualistic-preys model with Markovian switching and Holling type III functional response // Advances in Difference Equations. — 2016. — V. 285. — DOI: 10.1186/s13662-016-1011-3. — MathSciNet: MR3568272.
  153. Z. He, B. Li. Complex dynamic behavior of a discrete-time predator–prey system of Holling-III type // Advances in Difference Equations. — 2014. — V. 180. — MathSciNet: MR3344136.
  154. M. Hebblewhite. Wolf and elk predator–prey dynamics in Banff National Park. — USA: University of Montana, Missoula, 2000. — Thesis.
  155. R. Hilborn. Do principles for conservation help managers? // Ecological Applications. — 1996. — V. 6, no. 2. — P. 364–365. — DOI: 10.2307/2269371 .
  156. R. Hilborn, M. Mangel. The ecological detective: confronting models with data. — Princeton University Press, 1997.
  157. F. M. Hilker, H. Malchow, M. Langlais, S. V. Petrovskii. Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis // Ecological complexity. — 2006. — V. 3, no. 3. — P. 200–208. — DOI: 10.1016/j.ecocom.2006.03.002.
  158. J. Hofbauer, K. Sigmund. Evolutionary games and population dynamics. — Cambridge university press, 1998. — MathSciNet: MR1635735.
  159. W. L. Hogarth, P. Diamond. Interspecific competition in larvae between entomophagous parasitoids // American Naturalist. — 1984. — V. 124. — P. 552–560. — DOI: 10.1086/284294.
  160. J. Hone, R. P. Duncan, D. M. Forsyth. Estimates of maximum annual population growth rates (rm) of mammals and their application in wildlife management // Journal of Applied Ecology. — 2010. — V. 47, no. 3. — P. 507–514. — DOI: 10.1111/j.1365-2664.2010.01812.x.
  161. J. HrbaEek. Species composition and the amount of zooplankton in relation to the fish stock // Rozpr. CSAV, Ser. mat. nat. sci. — 1962. — V. 72. — P. l–117.
  162. Z. Hu, Z. Teng, L. Zhang. Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response // Nonlinear Analysis: Real World Applications. — 2011. — V. 12, no. 4. — P. 2356–2377. — DOI: 10.1016/j.nonrwa.2011.02.009. — MathSciNet: MR2801025.
  163. T. Huang, H. Zhang. Bifurcation, chaos and pattern formation in a space-and time-discrete predatorprey system // Chaos, Solitons & Fractals. — 2016. — V. 91. — P. 92–107. — DOI: 10.1016/j.chaos.2016.05.009. — MathSciNet: MR3551690. — ads: 2016CSF....91...92H.
  164. T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang. Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response // Communications in Nonlinear Science and Numerical Simulation. — 2017. — V. 43. — P. 182–199. — DOI: 10.1016/j.cnsns.2016.07.004. — MathSciNet: MR3537313. — ads: 2017CNSNS..43..182H.
  165. L. V. Idels, M. Wang. Harvesting fisheries management strategies with modified effort function // International Journal of Modelling, Identification and Control. — 2008. — V. 3, no. 1. — P. 83–87. — DOI: 10.1504/IJMIC.2008.018188.
  166. P. Inchausti, L. R. Ginzburg. Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis // Journal of Animal Ecology. — 1998. — V. 67. — P. 180–194. — DOI: 10.1046/j.1365-2656.1998.00189.x.
  167. Y. Iwasa, M. Higashi, N. Yamamura. Prey distribution as a factor determining the choice of optimal foraging strategy // The American Naturalist. — 1981. — V. 117, no. 5. — P. 710–723. — DOI: 10.1086/283754. — MathSciNet: MR0642407.
  168. P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, Y. Maistrenko. Solitary states for coupled oscillators with inertia // Chaos. — 2018. — V. 28. — 011103. — DOI: 10.1063/1.5019792. — MathSciNet: MR3747424. — ads: 2018Chaos..28a1103J.
  169. Kakehash, N. , Y. Suzuki, Y. Iwasa. Niche overlap of parasitoids in host–parasitoid systems: its consequence to single versus multiple introduction controversy in biological control // Journal of Applied Ecology. — 1984. — V. 21. — P. 115–131. — DOI: 10.2307/2403041.
  170. K. Kaneko. Clustering, coding, switching, hierarchical, ordering, and control in network of chaotic elements // Physica D. — 1990. — V. 41. — P. 137–172. — DOI: 10.1016/0167-2789(90)90119-A. — MathSciNet: MR1049123. — ads: 1990PhyD...41..137K.
  171. K. Kaneko. Lyapunov analysis and information flow in coupled map lattices // Phisica D. — 1986. — V. 23. — P. 436–447. — DOI: 10.1016/0167-2789(86)90149-1. — MathSciNet: MR0876920. — ads: 1986PhyD...23..436K.
  172. K. Kaneko. Period-Doubling of Kink-Antikink Patterns, Quasiperiodicity in Antiferro-Like Structures and Spatial Intermittency in Coupled Logistic Lattice Towards a Prelude of a “Field Theory of Chaos” // Progress of Theoretical Physics. — 1984. — V. 72, no. 3. — P. 480–486. — DOI: 10.1143/PTP.72.480. — MathSciNet: MR0769060. — ads: 1984PThPh..72..480K.
  173. Y. Kang, D. Armbruster. Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions // International Journal of Biomathematics. — 2011. — V. 4, no. 3. — P. 255–274. — DOI: 10.1142/S1793524511001234. — MathSciNet: MR2845199.
  174. Y. Kang, D. Armbruster, Y. Kuang. Dynamics of a plant-herbivore model // Journal of Biological Dynamics. — 2008. — V. 2, no. 2. — P. 89–101. — DOI: 10.1080/17513750801956313. — MathSciNet: MR2427520.
  175. S. Kant, V. Kumar. Stability analysis of predator–prey system with migrating prey and disease infection in both species // Applied Mathematical Modelling. — 2017. — V. 42. — P. 509–539. — DOI: 10.1016/j.apm.2016.10.003. — MathSciNet: MR3580631.
  176. K. L. Kausrud, A. Mysterud, H. Steen, J. O. Vik, E. Østbye, B. Cazelles, E. Framstad, A. M. Eikeset, I. Mysterud, T. Solhøy, N. P. Stenseth. Linking climate change to lemming cycles // Nature. — 2008. — V. 456. — P. 93–97. — DOI: 10.1038/nature07442. — ads: 2008Natur.456...93K.
  177. J. L. Keim, P. D. DeWitt, S. R. Lele. Predators choose prey over prey habitats: evidence from a lynxhare system // Ecological Applications. — 2011. — V. 21, no. 4. — P. 1011–1016. — DOI: 10.1890/10-0949.1.
  178. S. Khajanchi. Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function // Applied Mathematics and Computation. — 2017. — V. 302. — P. 122–143. — DOI: 10.1016/j.amc.2017.01.019. — MathSciNet: MR3602743.
  179. S. Khajanchi, S. Banerjee. Role of constant prey refuge on stage structure predator–prey model with ratio dependent functional response // Applied Mathematics and Computation. — 2017. — V. 314. — P. 193–198. — DOI: 10.1016/j.amc.2017.07.017. — MathSciNet: MR3683866.
  180. A. Q. Khan. Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model // SpringerPlus. — 2016. — V. 5, no. 126. — DOI: 10.1186/s40064-015-1618-y .
  181. M. Kimura. Diffusion models in population genetics // Methren Review Series in applied probability. — 1964. — V. 2. — P. 178–232. — MathSciNet: MR0172727.
  182. M. Kimura, G. H. Weiss. The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance // Genetics. — 1964. — V. 49, no. 4. — P. 561–576.
  183. R. Kon. Multiple attractors in host-parasitoid interactions: Coexistence and extinction // Mathematical Biosciences. — 2006. — V. 201. — P. 1–2. — DOI: 10.1016/j.mbs.2005.12.010. — MathSciNet: MR2252086. — ads: 2006LNP...704....1K.
  184. K. Korpela, M. Delgado, H. Henttonen, E. Korpimaki, E. Koskela, O. Ovaskainen, H. Pietiainen, J. Sundell, N. Gyoccoz, O. Huitu. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles // Global Change Biology. — 2013. — V. 19. — P. 697–710. — DOI: 10.1111/gcb.12099. — ads: 2013GCBio..19..697K.
  185. M. Kot, M. Lewis, P. Van den Driessche. Dispersal data and the spread of invading organisms // Ecology. — 1996. — V. 77, no. 7. — P. 2027–2042. — DOI: 10.2307/2265698.
  186. P. J. Krebs. Population Fluctuations in Rodents. — Chicago: The University of Chicago Press, 2013.
  187. J. Kritzer, P. Sale. Marine metapopulations. — New York: Academic Press, 2006.
  188. V. Křivan, R. Cressman, C. Schneider. The ideal free distribution: A review and synthesis of the gametheoretic perspective // Theoretical Population Biology. — 2008. — V. 73. — P. 403–425. — DOI: 10.1016/j.tpb.2007.12.009.
  189. Y. Kuramoto, D. Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators // Nonlinear Phenomena in Complex Systems. — 2002. — V. 5, no. 4. — P. 380–385.
  190. R. Lande, S. Engen, B. E. Saether. Optimal harvesting of fluctuating populations with a risk of extinction // The American Naturalist. — 1995. — V. 145, no. 5. — P. 728–745. — DOI: 10.1086/285765.
  191. P. A. Larkin. An epitaph for the concept of maximum sustained yield // Transactions of the American fisheries society. — 1977. — V. 106, no. 1. — P. 1–11. — DOI: 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2.
  192. L. P. Lefkovitch. The study of population growth in organisms grouped by stages // Biometrics. — 1965. — V. 21. — P. 1–18. — DOI: 10.2307/2528348.
  193. P. Legendre, M. J. Fortin. Spatial pattern and ecological analysis // Plant Ecology. — 1989. — V. 80, no. 2. — P. 107–138. — DOI: 10.1007/BF00048036.
  194. P. H. Leslie. On the use of matrices in certain population mathematics // Biometrika. — 1945. — V. 33. — P. 183–212. — DOI: 10.1093/biomet/33.3.183. — MathSciNet: MR0015760.
  195. P. H. Leslie. Some further notes on the use of matrices in population mathematics // Biometrika. — 1948. — V. 35. — P. 213–245. — DOI: 10.1093/biomet/35.3-4.213. — MathSciNet: MR0027991.
  196. R. Levins. Some demographic and genetic consequences of environmental heterogeneity for biological control // Bulletin of the Entomological Society of America. — 1969. — V. 15. — P. 237–240. — DOI: 10.1093/besa/15.3.237.
  197. X. Liao, Z. Ouyang, S. Zhou. Permanence and stability of equilibrium for a two-prey one-predator discrete model // Applied Mathematics and Computation. — 2007. — V. 186. — P. 93–100. — DOI: 10.1016/j.amc.2006.07.090. — MathSciNet: MR2316495.
  198. M. Liu, P. Bai. Dynamics of a stochastic one-prey two-predator model with Lévy jumps // Applied Mathematics and Computation. — 2016. — V. 284. — P. 308–321. — DOI: 10.1016/j.amc.2016.02.033. — MathSciNet: MR3486371.
  199. M. Liu, M. Fan. Stability in distribution of a three-species stochastic cascade predator-prey system with time delays // IMA Journal of Applied Mathematics. — 2017. — V. 82, no. 2. — P. 396–423. — MathSciNet: MR3649390.
  200. M. Liu, X. He, J. Yu. Dynamics of a stochastic regime-switching predator—prey model with harvesting and distributed delays // Nonlinear Analysis: Hybrid Systems. — 2018. — V. 28. — P. 87–104. — DOI: 10.1016/j.nahs.2017.10.004. — MathSciNet: MR3744970.
  201. P. Liu, Q. Zhang, J. Li, W. Yue. Stability analysis in a delayed prey–predator-resource model with harvest effort and stage structure // Applied Mathematics and Computation. — 2014. — V. 238. — P. 177–192. — DOI: 10.1016/j.amc.2014.04.015. — MathSciNet: MR3209626.
  202. E. Liz. How to control chaotic behaviour and population size with proportional feedback // Phys Lett A. — 2010. — V. 374. — P. 725–728. — DOI: 10.1016/j.physleta.2009.11.063. — MathSciNet: MR2575625. — ads: 2010PhLA..374..725L.
  203. E. Liz, F. M. Hilker. Harvesting and dynamics in some one-dimensional population models / Theory and Applications of Difference Equations and Discrete Dynamical Systems. — Berlin, Heidelberg: Springer, 2014. — P. 61–73. — MathSciNet: MR3280200.
  204. E. Liz, P. Pilarczyk. Global dynamics in a stage-structured discrete-time population model with harvesting // Journal of Theoretical Biology. — 2012. — V. 297. — P. 148–165. — DOI: 10.1016/j.jtbi.2011.12.012. — MathSciNet: MR2899025.
  205. E. Liz, A. Ruiz-Herrera. The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting // Journal of mathematical biology. — 2012. — V. 65, no. 5. — P. 997–1016. — DOI: 10.1007/s00285-011-0489-2. — MathSciNet: MR2984132.
  206. D. O. Logofet. Convexity in projection matrices: projection to a calibration problem // Ecological Modelling. — 2008. — V. 216, no. 2. — P. 217–228. — DOI: 10.1016/j.ecolmodel.2008.03.004.
  207. D. Ludwig, R. Hilborn, P. Walters. Uncertainty, resource exploitation, and conservation: lessons from history // Ecological Applications. — 1993. — V. 3, no. 4. — P. 547–549.
  208. L. Luiselli, R. Migliazza, P. Rotondo, G. Amori. Macro-ecological patterns of a prey–predator system: rodents and snakes in West and Central Africa // Tropical zoology. — 2014. — V. 27, no. 1. — P. 1–8. — DOI: 10.1080/03946975.2014.894399.
  209. X. Ma, Y. Shao, Z. Wang, M. Luo, X. Fang, Z. Ju. An impulsive two-stage predator—prey model with stage-structure and square root functional responses // Mathematics and Computers in Simulation. — 2016. — V. 119. — P. 91–107. — DOI: 10.1016/j.matcom.2015.08.009. — MathSciNet: MR3412994.
  210. V. Manica, J. A. L. Silva. Population distribution and synchronized dynamics in a metapopulation model in two geographic scales // Mathematical Biosciences. — 2014. — V. 250. — P. 1–9. — DOI: 10.1016/j.mbs.2014.02.002. — MathSciNet: MR3178304. — ads: 2014AIPC.1577....1M.
  211. V. Manica, J. A. L. Silva. The Influence of Temporal Migration in the Synchronization of Populations Trends in Applied and Computational Mathematics // Tend. Mat. Apl. Comput. — 2015. — V. 16, no. 1. — P. 31–40. — MathSciNet: MR3361847.
  212. T. Maruyama. Effective number of alleles in subdivided population // Theor. Pop. Biol. — 1970. — V. 1, no. 1. — P. 273–306. — DOI: 10.1016/0040-5809(70)90047-X. — MathSciNet: MR0363532.
  213. R. M. May. Biological population obeying difference equations: stable points, stable cycles and chaos // J. Theor. Biol. — 1975. — V. 51, no. 2. — P. 511–524. — DOI: 10.1016/0022-5193(75)90078-8.
  214. R. M. May. Simple mathematical models with very complicated dynamics // Nature. — 1976. — V. 261. — P. 459–467. — DOI: 10.1038/261459a0. — ads: 1976Natur.261..459M.
  215. R. M. May. Stability and Complexity in Model Ecosystems. — Princeton (NJ): PrinP. Univ. Press, 1973.
  216. R. M. May, A. L. Lloyd. Synchronicity, chaos and population cycles: spatial coherence in an uncertain world // Trends Ecol. Evol. — 1999. — V. 14, no. 11. — P. 417–418. — DOI: 10.1016/S0169-5347(99)01717-6.
  217. R. М. May. Biological populations with non-overlapping generations: stable points, stable cycles and chaos // Science. — 1974. — V. 186. — P. 645–647. — DOI: 10.1126/science.186.4164.645. — ads: 1974Sci...186..645M.
  218. J. Maynard-Smith. Models in ecology. — Cambridge: Cambridge University Press, 1974.
  219. J. Maynard-Smith, M. Slatkin. The stability of predator–prey systems // Ecology. — 1973. — V. 54. — P. 384–391. — DOI: 10.2307/1934346.
  220. W. Mbava, J. Y. T. Mugisha, J. W. Gonsalves. Prey, predator and super-predator model with disease in the super-predator // Applied Mathematics and Computation. — 2017. — V. 297. — P. 92–114. — DOI: 10.1016/j.amc.2016.10.034. — MathSciNet: MR3577996.
  221. E. McCauley, W. G. Wilson, A. M. de Roos. Dynamics of age-structured and spatially structured predator-prey interactions: individual-based models and population-level formulations // The American Naturalist. — 1993. — V. 142, no. 3. — P. 412–442. — DOI: 10.1086/285547.
  222. A. J. McLane, C. Semeniuk, G. J. McDermid, D. J. Marceau. The role of agent-based models in wildlife ecology and management // Ecological Modelling. — 2011. — V. 222, no. 8. — P. 1544–1556. — DOI: 10.1016/j.ecolmodel.2011.01.020.
  223. P. Miškinis, V. Vasiliauskienė. The analytical solutions of the harvesting Verhulst’s evolution equation // Ecological Modelling. — 2017. — V. 360. — P. 189–193. — DOI: 10.1016/j.ecolmodel.2017.06.021.
  224. D. P. Mistro, L. A. D. Rodrigues, S. Petrovskii. Spatiotemporal complexity of biological invasion in a space-and time-discrete predator–prey system with the strong Allee effect // Ecological Complexity. — 2012. — V. 9. — P. 16–32. — DOI: 10.1016/j.ecocom.2011.11.004. — MathSciNet: MR3078503.
  225. D. Mukherjee. Persistence aspect of a predator–prey model with disease in the prey // Differential Equations and Dynamical Systems. — 2016. — V. 24, no. 2. — P. 173–188. — DOI: 10.1007/s12591-014-0213-y. — MathSciNet: MR3486010.
  226. J. D. Murray. Mathematical biology. — Berlin – Heidelberg – New York: Springer, 2002.
  227. M. Musiani, S. M. Anwar, G. J. McDermid, M. Hebblewhite, D. J. Marceau. How humans shape wolf behavior in Banff and Kootenay National Parks, Canada // Ecological Modelling. — 2010. — V. 221, no. 19. — P. 2374–2387. — DOI: 10.1016/j.ecolmodel.2010.06.019.
  228. L. V. Nedorezov. Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. — Saarbrucken: LAP Lambert Academic Publishing, 2012.
  229. G. P. Neverova, A. I. Abakumov, I. P. Yarovenko, E. Ya. Frisman. Mode change in thedynamics of exploited limited population with age structure // Nonlinear Dynamics. — 2018. — DOI: 10.1007/s11071-018-4396-6.
  230. G. P. Neverova, I. P. Yarovenko, E. Y. Frisman. Dynamics of populations with delayed density dependent birth rate regulation // Ecological Modelling. — 2016. — V. 340. — P. 64–73. — DOI: 10.1016/j.ecolmodel.2016.09.005.
  231. A. J. Nicholson. An outline of the dynamics of animal populations // Australian Journal of Zoology. — 1954. — V. 2. — P. 9–65. — DOI: 10.1071/ZO9540009.
  232. A. J. Nicholson. Supplement: the Balance of Animal Populations // Journal of Animal Ecology. — 1933. — V. 2, no. 1. — P. 131–178. — DOI: 10.2307/954.
  233. A. J. Nicholson. An outline of the dynamics of animal populations // Australian Journal of Zoology. — 1954. — V. 2. — P. 9–65. — DOI: 10.1071/ZO9540009.
  234. A. J. Nicholson, V. A. Bailey. The Balance of Animal Populations // Proceedings of the Zoological Society of London. — 1935. — V. 105, no. 3. — P. 551–598. — DOI: 10.1111/j.1096-3642.1935.tb01680.x.
  235. P. Opdam. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies // Landscape Ecology. — 1991. — V. 5, no. 2. — P. 93–106. — DOI: 10.1007/BF00124663.
  236. G.-L. Oppo, R. Kapral. Discrete models for the formation and evolution of spatial structure in dissipative systems // Phys. Rev. A. — 1984. — V. 33, no. 6. — P. 4219–4231. — DOI: 10.1103/PhysRevA.33.4219. — ads: 1986PhRvA..33.4219O.
  237. R. Pearl. The Biology of Population Growth. — NY: Alfred A. Knopf, 1925.
  238. R. Pearl, L. J. Reed. On the rate of growth of the population of the United States since 1790 and its mathematical representation // ProP. National Acad. of Sci. USA. — 1920. — V. 6. — P. 275–288. — DOI: 10.1073/pnas.6.6.275. — ads: 1920PNAS....6..275P.
  239. A. N. Pisarchik, U. Feudel. Control of multistability // Physics Reports. — 2014. — V. 540. — P. 167–218. — DOI: 10.1016/j.physrep.2014.02.007. — MathSciNet: MR3225716. — ads: 2014PhR...540..167P.
  240. G. H. Pyke. Optimal foraging theory: a critical review // Annual review of ecology and systematics. — 1984. — V. 15, no. 1. — P. 523–575. — DOI: 10.1146/annurev.es.15.110184.002515.
  241. E. V. Regehr, R. R. Wilson, K. D. Rode, M. P. Runge, H. L. Stern. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears // Journal of Applied Ecology. — 2017. — V. 54, no. 5. — P. 1534–1543. — DOI: 10.1111/1365-2664.12864.
  242. V. Rolland, J. A. Hostetler, T. C. Hines, H. F. Percival, M. K. Oli. Impact of harvest on survival of a heavily hunted game bird population // Wildlife Research. — 2010. — V. 37, no. 5. — P. 392–400. — DOI: 10.1071/WR09177.
  243. A. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator–prey interaction // Amer. Natur. — 1963. — V. 97. — P. 209–223. — DOI: 10.1086/282272.
  244. B. Sahoo. Disease control through provision of alternative food to predator: a model based study // International Journal of Dynamics and Control. — 2016. — V. 4, no. 3. — P. 239–253. — DOI: 10.1007/s40435-014-0099-0. — MathSciNet: MR3536135.
  245. Y. Saito, Y. Takeuchi. A time-delay model for prey-predator growth with stage structure // Canadian Applied Mathematics Quarterly. — 2003. — V. 11, no. 3. — P. 293–302. — MathSciNet: MR2132201.
  246. M. Sambath, K. Balachandran, M. Suvinthra. Stability and Hopf bifurcation of a diffusive predatorprey model with hyperbolic mortality // Complexity. — 2016. — V. 21, no. S1. — P. 34–43. — DOI: 10.1002/cplx.21708. — MathSciNet: MR3550625.
  247. J. M. Saucedo-Solorio, A. N. Pisarchik, V. Aboites. Shift of critical points in the parametrically modulated Hénon map with coexisting attractors // Physics Letters A. — 2002. — V. 304, no. 1–2. — P. 21–29. — DOI: 10.1016/S0375-9601(02)01349-X. — MathSciNet: MR1936760. — ads: 2002PhLA..304...21S.
  248. A. E. Scherer, D. L. Smee. A review of predator diet effects on prey defensive responses // Chemoecology. — 2016. — V. 26, no. 3. — P. 83–100. — DOI: 10.1007/s00049-016-0208-y.
  249. H. Seno. A paradox in discrete single species population dynamics with harvesting/thinning // Mathematical Biosciences. — 2008. — V. 214. — P. 63–69. — DOI: 10.1016/j.mbs.2008.06.004. — MathSciNet: MR2446613.
  250. I. A. Shepelev, A. V. Bukh, T. E. Vadivasova, V. S. Anishchenko, A. Zakharova. Double-well chimeras in 2D lattice of chaotic bistable elements // Commun. Nonlinear Sci. Numer. Simulat. — 2018. — V. 54. — P. 50–61. — DOI: 10.1016/j.cnsns.2017.05.017. — MathSciNet: MR3671400. — ads: 2018CNSNS..54...50S.
  251. M. Sieber, F. M. Hilker. The hydra effect in predator–prey models // Journal of mathematical biology. — 2012. — V. 64, no. 1-2. — P. 341–360. — DOI: 10.1007/s00285-011-0416-6. — MathSciNet: MR2864847.
  252. A. Sih, P. Crowley, M. MePeek, J. Petranka, K. Strohmeier. Predation, competition, and prey communities: a review of field experiments // Annual Review of Ecology and Systematics. — 1985. — V. 16, no. 1. — P. 269–311. — DOI: 10.1146/annurev.es.16.110185.001413.
  253. J. G. Skellam. Random dispersal in theoretical populations // Biometrika. — 1951. — V. 38. — P. 196–218. — DOI: 10.1093/biomet/38.1-2.196. — MathSciNet: MR0043440.
  254. K. T. Snyder, N. A. Freidenfelds, T. E. Miller. Consequences of sex-selective harvesting and harvest refuges in experimental meta-populations // Oikos. — 2014. — V. 123, no. 3. — P. 309–314. — DOI: 10.1111/j.1600-0706.2013.00662.x.
  255. P. D. Spencer, J. S. Collie. A simple predator–prey model of exploited marine fish populations incorporating alternative prey // ICES Journal of Marine Science. — 1995. — V. 53. — P. 615–628. — DOI: 10.1006/jmsc.1996.0082.
  256. P. D. N. Srinivasu, S. Ismail, C. R. Naidu. Global dynamics and controllability of a harvested preypredator system // Journal of Biological Systems. — 2001. — V. 9, no. 1. — P. 67–79. — DOI: 10.1142/S0218339001000311.
  257. A. Stéphanou, V. Volpert. Hybrid modelling in biology: a classification review // Mathematical Modelling of Natural Phenomena. — 2016. — V. 11, no. 1. — P. 37–48. — DOI: 10.1051/mmnp/201611103. — MathSciNet: MR3452634.
  258. X. K. Sun, H. F. Huo, H. Xiang. Bifurcation and stability analysis in predator–prey model with a stagestructure for predator // Nonlinear Dynamics. — 2009. — V. 58, no. 3. — P. 497–513. — DOI: 10.1007/s11071-009-9495-y. — MathSciNet: MR2562945.
  259. B. J. Swanson. Autocorrelated rates of change in animal populations and their relationship to precipitation // Conservation biology. — 1998. — V. 121, no. 4. — P. 801–808. — DOI: 10.1046/j.1523-1739.1998.97140.x.
  260. O. Tahvonen, J. Kumpula, A.-J. Pekkarinen. Optimal harvesting of an age-structured, two-sex herbivore–plant system // Ecological Modelling. — 2014. — V. 272. — P. 348–361. — DOI: 10.1016/j.ecolmodel.2013.09.029.
  261. S. Tang, L. Chen. A discrete predator-prey system with age-structure for predator and natural barriers for prey // Mathematical Modelling and Numerical Analysis. — 2001. — V. 35, no. 4. — P. 675–690. — DOI: 10.1051/m2an:2001102. — MathSciNet: MR1862874.
  262. N. K. Thakur, R. K. Upadhyay, S. N. Raw. Instabilities and Patterns in Zooplankton-Phytoplankton Dynamics: Effect of Spatial Heterogeneity / Mathematical Modelling and Scientific Computation. — Berlin: Springer, 2012. — P. 229–236. — MathSciNet: MR3525134.
  263. A. V. Tuzinkevich, E. Ya. Frisman. Dissipative structures and patchiness in spatial distribution of plants // Ecol. Modelling. — 1990. — no. 52. — P. 207–223. — DOI: 10.1016/0304-3800(90)90016-A.
  264. F. E. Udwadia, N. Raju. Dynamics of Coupled Nonlinear Maps and Its Application to Ecological Modeling // Applied mathematic and computation. — 1997. — V. 82. — P. 137–179. — DOI: 10.1016/S0096-3003(96)00027-6. — MathSciNet: MR1429224.
  265. M. B. Usher. A matrix model for forest management // Biometrics. — 1969. — V. 25, no. 3. — P. 309–315. — DOI: 10.2307/2528791.
  266. J. H. Vandermeer, D. E. Goldberg. Population Ecology: First Principles. — Princeton (NJ): PrinP. Univ. Press, 2003.
  267. G. C. Varley. The natural control of population balance in the knapweed gall-fly (Urophora jaceana) // Journal of Animal Ecology. — 1947. — V. 16. — P. 139–187. — DOI: 10.2307/1493.
  268. S. Vilhunen, H. Hirvonen. Innate antipredator responses of Arctic charr (Salvelinus alpinus) depend on predator species and their diet // Behavioral Ecology and Sociobiology. — 2003. — V. 55, no. 1. — P. 1–10. — DOI: 10.1007/s00265-003-0670-8.
  269. I. Waller, R. Kapral. Spatial and temporal structure in systems of coupled nonlinear oscillators // Phys. Rev. A. — 1986. — V. 30, no. 4. — P. 2047–2055. — DOI: 10.1103/PhysRevA.30.2047. — ads: 1984PhRvA..30.2047W.
  270. P. Walters, V. Christensen, B. Fulton, A. D. Smith, R. Hilborn. Predictions from simple predator–prey theory about impacts of harvesting forage fishes // Ecological modelling. — 2016. — V. 337. — P. 272–280. — DOI: 10.1016/j.ecolmodel.2016.07.014.
  271. E. E. Werner, J. F. Gilliam. The ontogenetic niche and species interactions in size-structured populations // Annual review of ecology and systematics. — 1984. — V. 15, no. 1. — P. 393–425. — DOI: 10.1146/annurev.es.15.110184.002141.
  272. A. Wikan. An Analysis of Discrete Stage-Structured Prey and Prey–Predator Population Models // Discrete Dynamics in Nature and Society. — 2017. — V. 2017. — 9475854. — DOI: 10.1155/2017/9475854. — MathSciNet: MR3641856.
  273. A. Wikan. From chaos to chaos. An analysis of a discrete age-structured prey-predator model // Journal of Mathematical Biology. — 2001. — V. 43, no. 6. — P. 471–500. — DOI: 10.1007/s002850100101. — MathSciNet: MR1874399.
  274. A. Wikström, J. Ripa, N. Jonzén. The role of harvesting in age-structured populations: disentangling dynamic and age truncation effects // Theoretical population biology. — 2012. — V. 82, no. 4. — P. 348–354. — DOI: 10.1016/j.tpb.2011.12.008.
  275. J. F. Wilmshurst, R. Greer, J. D. Henry. Correlated cycles of snowshoe hares and Dall’s sheep lambs // Can. J. Zool. — 2006. — V. 84. — P. 736–743. — DOI: 10.1139/z06-051.
  276. S. Wright. Breeding structure of population in relation to speciation // Amer. Natur. — 1940. — V. 74. — P. 232–248. — DOI: 10.1086/280891.
  277. S. Wright. Evolution and the Genetics of Population. The Theory of Gene Frequencies. — Chicago: Univ. Chicago Press, 1969.
  278. D. B. Wysham, A. Hastings. Sudden Shift Ecological Systems: Intermittency and Transients in the Coupled Riker Population Model // Bulletin of Mathematical Biology. — 2008. — V. 70. — P. 1013–1031. — DOI: 10.1007/s11538-007-9288-8. — MathSciNet: MR2391177.
  279. R. Xu. Global dynamics of a predator–prey model with time delay and stage structure for the prey // Nonlinear Analysis: Real World Applications. — 2011. — V. 12, no. 4. — P. 2151–2162. — DOI: 10.1016/j.nonrwa.2010.12.029. — MathSciNet: MR2801008.
  280. O. L. Zhdanova, A. E. Kuzin, E. I. Skaletskaya, E. Ya. Frisman. Why the population of the northern fur seals (Callorhin usursinus) of Tyuleniy Island does not recover following the harvest ban: analysis of 56 years of observation data // Ecological Modelling. — 2017. — V. 363. — P. 57–67. — DOI: 10.1016/j.ecolmodel.2017.08.027.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"