Результаты поиска по 'аналитическая оценка':
Найдено статей: 56
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1415-1418
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 5-10
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 821-823
  7. Сорокин П.Н.
    Оценка модуля аналога тригонометрической суммы Г. Вейля в кольце гауссовых чисел
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 343-347

    В работе рассматривается кольцо гауссовых чисел. Методами аналитической теории чисел доказывается оценка модуля некоторого аналога тригонометрической суммы Г. Вейля с суммированием по гауссовым числам, мультипликативная норма которых меньше целого числа.

    Sorokin P.N.
    Estimate of the module of analogue Weyl’s trigonometrical sum in ring of Gaussian numbers
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 343-347

    The ring of Gaussian numbers is considered. The estimation of the module of some analogue of Weyl's trigonometrical sum with summation on Gaussian numbers is proved by methods of the analytical number theory. Multiplicative norm of Gaussian numbers is less than some integer.

  8. Лопато А.И., Уткин П.С.
    Математическое моделирование пульсирующей волны детонации с использованием ENO-схем различных порядков аппроксимации
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 643-653

    Представлены результаты численных исследований распространения пульсирующей волны детонации с использованием ENO-схем с порядками аппроксимации с первого по четвертый включительно. Результаты, полученные с использованием схем различного порядка аппроксимации, показывают, что характер распространения детонационной волны в ацетилено-воздушной смеси как качественно, так и количественно соответствует аналитическим оценкам. Для водородно-воздушной смеси ни для какой из рассмотренных схем не удалось получить устойчивое распространение волны. Наблюдается переход от регулярного распространения к маргинальному с последующим затуханием волны детонации.

    Lopato A.I., Utkin P.S.
    Mathematical modeling of pulsating detonation wave using ENO-schemes of different approximation orders
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 643-653

    The results of the numerical investigations of pulsating detonation wave propagation using the ENO-schemes with the approximation orders from the first to the fourth inclusively are presented. The results obtained with the use of the schemes of different approximation orders demonstrate that the pattern of detonation wave propagation in acetylene-air mixture corresponds to the analytical estimates both qualitatively and quantitatively. For the hydrogen-air mixture none of the schemes concerned provides the stable detonation wave propagation. The transition from the regular mode to the marginal one with the subsequent detonation breakup is observed.

    Views (last year): 4. Citations: 5 (RSCI).
  9. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.

    Views (last year): 2. Citations: 6 (RSCI).
  10. Зыза А.В.
    Компьютерное исследование полиномиальных решений уравнений динамики гиростата
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 7-25

    В работе исследуются полиномиальные решения уравнений движения гиростата под действием потенциальных и гироскопических сил и уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. В математической постановке каждая из указанных задач описывается системой нелинейных обыкновенных дифференциальных уравнений, правые части которых содержат пятнадцать постоянных параметров, характеризующих распределение масс гиростата, потенциальные и непотенциальные силы, действующие на гиростат. Рассмотрены полиномиальные решения двух классов: Стеклова–Ковалевского–Горячева и Докшевича. Структура инвариантных соотношений для полиномиальных решений показывает, что, как правило, к указанным выше пятнадцати параметрам добавляется еще не менее двадцати пяти параметров задачи. При решении такой многопараметрической задачи в статье наряду с аналитическими методами применяются численные методы, основанные на вычислительных математических пакетах. Исследование условий существования полиномиальных решений проведено в два этапа. На первом этапе выполнена оценка максимальных степеней рассмотренных полиномов и получена нелинейная алгебраическая система на параметры дифференциальных уравнений и полиномиальных решений. На втором этапе с помощью компьютерных вычислений исследованы условия разрешимости полученных систем и изучены условия действительности построенных решений.

    Для уравнений Кирхгофа–Пуассона построены два новых полиномиальных решения. Первое решение характеризуется следующим свойством: квадраты проекций угловой скорости на небарецентрические оси являются многочленами пятой степени от компоненты вектора угловой скорости на барецентрическую ось, которая выражается в виде гиперэллиптической функции времени. Второе решение характеризуется тем, что первая компонента угловой скорости является многочленом второго порядка, вторая компонента—многочленом третьего порядка, квадрат третьей компоненты—многочленом шестого порядка по вспомогательной переменной, которая является обращением эллиптического интеграла Лежандра.

    Третье решение построено для уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. Для него структура такова: первая и вторая компоненты вектора угловой скорости—многочлены второй степени, квадрат третьей компоненты—многочлен четвертой степени по вспомогательной переменной, которая находится обращением эллиптического интеграла Лежандра.

    Все построенные решения не имеют аналогов в динамике твердого тела с неподвижной точкой.

    Zyza A.V.
    Computer studies of polynomial solutions for gyrostat dynamics
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 7-25

    We study polynomial solutions of gyrostat motion equations under potential and gyroscopic forces applied and of gyrostat motion equations in magnetic field taking into account Barnett–London effect. Mathematically, either of the above mentioned problems is described by a system of non-linear ordinary differential equations whose right hand sides contain fifteen constant parameters. These parameters characterize the gyrostat mass distribution, as well as potential and non-potential forces acting on gyrostat. We consider polynomial solutions of Steklov–Kovalevski–Gorjachev and Doshkevich classes. The structure of invariant relations for polynomial solutions shows that, as a rule, on top of the fifteen parameters mentioned one should add no less than twenty five problem parameters. In the process of solving such a multi-parametric problem in this paper we (in addition to analytic approach) apply numeric methods based on CAS. We break our studies of polynomial solutions existence into two steps. During the first step, we estimate maximal degrees of polynomials considered and obtain a non-linear algebraic system for parameters of differential equations and polynomial solutions. In the second step (using the above CAS software) we study the solvability conditions of the system obtained and investigate the conditions of the constructed solutions to be real.

    We construct two new polynomial solutions for Kirchhoff–Poisson. The first one is described by the following property: the projection squares of angular velocity on the non-baracentric axes are the fifth degree polynomials of the angular velocity vector component of the baracentric axis that is represented via hypereliptic function of time. The second solution is characterized by the following: the first component of velocity conditions is a second degree polynomial, the second component is a polynomial of the third degree, and the square of the third component is the sixth degree polynomial of the auxiliary variable that is an inversion of the elliptic Legendre integral.

    The third new partial solution we construct for gyrostat motion equations in the magnetic field with Barnett–London effect. Its structure is the following: the first and the second components of the angular velocity vector are the second degree polynomials, and the square of the third component is a fourth degree polynomial of the auxiliary variable which is found via inversion of the elliptic Legendre integral of the third kind.

    All the solutions constructed in this paper are new and do not have analogues in the fixed point dynamics of a rigid body.

    Views (last year): 15.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"