All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 18.
-
Дискретное моделирование процесса восстановительного ремонта участка дороги
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.
Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.
Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.
Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.
В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.
Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.
Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.
Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.
Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.
Ключевые слова: имитационная модель, управление действиями сил и средств.
Discrete simulation of the road restoration process
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1255-1268This work contains a description of the results of modeling the process of maintaining the readiness of a section of the road network under strikes of with specified parameters. A one-dimensional section of road up to 40 km long with a total number of strikes up to 100 during the work of the brigade is considered. A simulation model has been developed for carrying out work to maintain it in working condition by several groups (engineering teams) that are part of the engineering and road division. A multicopter-type unmanned aerial vehicle is used to search for the points of appearance of obstacles. Life cycle schemes of the main participants of the tactical scene have been developed and an event-driven model of the tactical scene has been built. The format of the event log generated as a result of simulation modeling of the process of maintaining a road section is proposed. To visualize the process of maintaining the readiness of a road section, it is proposed to use visualization in the cyclogram format.
An XSL style has been developed for building a cyclogram based on an event log. As an algorithm for making a decision on the assignment of barriers to brigades, the simplest algorithm has been adopted, prescribing choosing the nearest barrier. A criterion describing the effectiveness of maintenance work on the site based on the assessment of the average speed of vehicles on the road section is proposed. Graphs of the dependence of the criterion value and the root-meansquare error depending on the length of the maintained section are plotted and an estimate is obtained for the maximum length of the road section maintained in a state of readiness with specified values for the selected quality indicator with specified characteristics of striking and performance of repair crews. The expediency of carrying out work to maintain readiness by several brigades that are part of the engineering and road division operating autonomously is shown.
The influence of the speed of the unmanned aerial vehicle on the ability to maintain the readiness of the road section is analyzed. The speed range for from 10 to 70 km/h is considered, which corresponds to the technical capabilities of multicoptertype reconnaissance unmanned aerial vehicles. The simulation results can be used as part of a complex simulation model of an army offensive or defensive operation and for solving the problem of optimizing the assignment of tasks to maintain the readiness of road sections to engineering and road brigades. The proposed approach may be of interest for the development of military-oriented strategy games.
Keywords: simulation, optimal maintenance of the road. -
Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.
Ключевые слова: детектирование летающих объектов на изображениях, сверточная нейронная сеть, YOLO, мобильная система компьютерного зрения.
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
Модели сверточных нейронных сетей для классификации поврежденных вредителями хвойных деревьев на изображениях с беспилотных летательных аппаратов
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1271-1294В статье рассмотрена задача мультиклассификации хвойных деревьев с различной степенью поражения насекомыми-вредителями на изображениях, полученных с помощью беспилотных летательных аппаратов (БПЛА). Предложены три модификации классической сверточной нейронной сети U-Net для попиксельной классификации изображений пораженных деревьев пихты сибирской Abies sibirica и кедра сибирского Pinus sibirica. Первая модель Мо-U-Net вносит ряд изменений в классическую модель U-Net. Вторая и третья модели, названные MSC-U-Net и MSC-Res-U-Net, представляют собой ансамбли из трех моделей Мо-U-Net с разной глубиной и размерами входных изображений. В модели MSC-Res-U-Net также используются остаточные блоки. Нами созданы два датасета по изображениям с БПЛА пораженных вредителями деревьев Abies sibirica и Pinus Sibirica и обучены предложенные три модели с использованием функций потерь mIoULoss и Focal Loss. Затем исследовалась эффективность каждой обученной модели при классификации поврежденных деревьев Abies sibirica и Pinus sibirica. Результаты показали, что в случае использования функции потерь mIoULoss предложенные модели не пригодны для практического применения в лесной отрасли, поскольку не позволяют получить для отдельных классов деревьев этих пород точность классификации по метрике IoUс, превышающую пороговое значение 0,5. Однако в случае функции потерь Focal Loss модели MSC-Res-U-Net и Mo-U-Net, в отличие от третьей предложенной модели MSC-U-Net, для всех классов деревьев Abies sibirica и Pinus sibirica показывают высокую точность классификации (превышение порогового значения 0,5 по метрикам IoUс и mIoU). Эти результаты позволяют считать, что модели MSC-Res-U-Net и Mo-U-Net являются практически значимыми для специалистов лесной отрасли, поскольку позволяют выявлять хвойные деревья этих пород на ранней стадии их поражения вредителями.
Ключевые слова: пораженные вредителями хвойные деревья, пихта сибирская $Abies sibirica$, кедр сибирский $Pinus sibirica$, семантическая сегментация изображений, беспилотный летательный аппарат, модель сверточной нейронной сети U-Net.
Classification of pest-damaged coniferous trees in unmanned aerial vehicles images using convolutional neural network models
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1271-1294This article considers the task of multiclass classification of coniferous trees with varying degrees of damage by insect pests on images obtained using unmanned aerial vehicles (UAVs). We propose the use of convolutional neural networks (CNNs) for the classification of fir trees Abies sibirica and Siberian pine trees Pinus sibirica in unmanned aerial vehicles (UAV) imagery. In our approach, we develop three CNN models based on the classical U-Net architecture, designed for pixel-wise classification of images (semantic segmentation). The first model, Mo-U-Net, incorporates several changes to the classical U-Net model. The second and third models, MSC-U-Net and MSC-Res-U-Net, respectively, form ensembles of three Mo-U-Net models, each varying in depth and input image sizes. Additionally, the MSC-Res-U-Net model includes the integration of residual blocks. To validate our approach, we have created two datasets of UAV images depicting trees affected by pests, specifically Abies sibirica and Pinus sibirica, and trained the proposed three CNN models utilizing mIoULoss and Focal Loss as loss functions. Subsequent evaluation focused on the effectiveness of each trained model in classifying damaged trees. The results obtained indicate that when mIoULoss served as the loss function, the proposed models fell short of practical applicability in the forestry industry, failing to achieve classification accuracy above the threshold value of 0.5 for individual classes of both tree species according to the IoU metric. However, under Focal Loss, the MSC-Res-U-Net and Mo-U-Net models, in contrast to the third proposed model MSC-U-Net, exhibited high classification accuracy (surpassing the threshold value of 0.5) for all classes of Abies sibirica and Pinus sibirica trees. Thus, these results underscore the practical significance of the MSC-Res-U-Net and Mo-U-Net models for forestry professionals, enabling accurate classification and early detection of pest outbreaks in coniferous trees.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"