Результаты поиска по 'геометрия':
Найдено статей: 48
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Editor's note
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 379-381
    Views (last year): 36.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 201-203
    Views (last year): 29.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Editor's note
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 559-561
    Views (last year): 4.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
    Editor's note
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 259-261
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
    Editor’s note
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1415-1418
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 245-248
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 581-584
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1037-1040
  9. Коганов А.В.
    Задача интегральной геометрии с мероиндукцией
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 31-37

    Предлагается новая постановка задачи интегральной геометрии, в которой образ функции в каждой точке получается путем ее интегрирования по мере, зависящей от точки. Такую систему мер назовем мероиндукцией. Показано, что для класса мероиндукций, имеющих единичный атом в соответственной точке каждой меры и ограниченных на всем пространстве, существует устойчивая асимптотическая формула обращения. Это обобщает полученные ранее результаты для усреднений по системам измеримых разбиений и для весовых усреднений на графах.

    Koganov A.V.
    The task of integral geometry with measure induction
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 31-37

    A new statement of Integral Geometry problem where the image of function in each point is taken as an integral with respect to measure which depends on the point is suggested. Such Measure System is named Measure Induction. It is shown that an inversion formula exists for class of measures having a unit atom in corresponding
    point and limited on whole space. Previously obtained results for average on systems of measurement dissections and for weight average on graphs are generalized.

  10. Грачев В.А., Найштут Ю.С.
    Сплошные среды из тонких пластин
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 655-670

    Представлена фрактальная система из тонких шарнирно соединенных пластинок, которая может быть изучена методами механики сплошной среды с внутренними степенями свободы. Конструкция является трансформирующейся: в начальном положении это практически одномерное многообразие малого диаметра, после развертки система занимает значительный объем. Геометрия сплошной среды исследуется методом подвижного репера. На основе уравнений структуры Картана выводятся соотношения, позволяющие определить геометрию введенных многообразий. В доказательствах существенно используется тот факт, что составляющие фрактал пластинки являются тонкими, а их длина мала по сравнению с габаритами системы. Изучается механика введенных сплошных сред, если шарниры между пластинками являются идеальными жесткопластическими и выполнены из материалов с памятью формы. Опираясь на теоремы о предельных нагрузках, вычисляются внутреннее давление, необходимое для развертывания пакета в объемную конструкцию, а также затраты тепла для возврата системы в первоначальное состояние.

    Grachev V.A., Nayshtut Yu.S.
    Solids composed of thin plates
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 655-670

    The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable — initially it is close to a small diameter one-dimensional manifold that occupies significant volume after deployment. The geometry of solids is studied using the method of the moving hedron. The relations enabling to define the geometry of the introduced manifolds are derived based on the Cartan structure equations. The proof substantially makes use of the fact that the fractal consists of thin plates that are not long compared to the sizes of the system. The mechanics is described for the solids with rigid plastic hinges between the plates, when the hinges are made of shape memory material. Based on the ultimate load theorems, estimates are performed to specify internal pressure that is required to deploy the package into a three-dimensional structure, and heat input needed to return the system into its initial state.

    Views (last year): 2.
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"