All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 29.
-
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
Ключевые слова: демографическая динамика, динамика человеческого капитала, математическое моделирование, уравнения переноса, разностная схема, составляющие человеческого капитала, инвестиции в человеческий капитал.
Mathematical modeling of the human capital dynamic
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342Views (last year): 34.In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.
This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.
The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.
-
Режимы с обострением в истории человечества или воспоминания о будущем
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.
Ключевые слова: биологическая и социальная эволюция, гиперболический рост, переходные процессы, стабилизация.
Regimes with exacerbation in the history of mankind or memories of the future
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.
-
Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.
Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.
Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
Методологический подход к моделированию и прогнозированию воздействия пространственной неоднородности процессов распространения COVID-19 на экономическое развитие регионов России
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 629-648Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.
Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.
В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.
Ключевые слова: пространственная неоднородность, пространственная автокорреляция, кластеризация, локальный индекс Морана, межрегиональные взаимосвязи, коронавирусная инфекция, пространственно-временное моделирование, панельные данные, региональные системы.
Methodological approach to modeling and forecasting the impact of the spatial heterogeneity of the COVID-19 spread on the economic development of Russian regions
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 629-648The article deals with the development of a methodological approach to forecasting and modeling the socioeconomic consequences of viral epidemics in conditions of heterogeneous economic development of territorial systems. The relevance of the research stems from the need for rapid mechanisms of public management and stabilization of adverse epidemiological situation, taking into account the spatial heterogeneity of the spread of COVID-19, accompanied by a concentration of infection in large metropolitan areas and territories with high economic activity. The aim of the work is to substantiate a methodology to assess the spatial heterogeneity of the spread of coronavirus infection, find poles of its growth, emerging spatial clusters and zones of their influence with the assessment of inter-territorial relationships, as well as simulate the effects of worsening epidemiological situation on the dynamics of economic development of regional systems. The peculiarity of the developed approach is the spatial clustering of regional systems by the level of COVID-19 incidence, conducted using global and local spatial autocorrelation indices, various spatial weight matrices, and L.Anselin mutual influence matrix based on the statistical information of the Russian Federal State Statistics Service. The study revealed a spatial cluster characterized by high levels of infection with COVID-19 with a strong zone of influence and stable interregional relationships with surrounding regions, as well as formed growth poles which are potential poles of further spread of coronavirus infection. Regression analysis using panel data not only confirmed the impact of COVID-19 incidence on the average number of employees in enterprises, the level of average monthly nominal wages, but also allowed to form a model for scenario prediction of the consequences of the spread of coronavirus infection. The results of this study can be used to form mechanisms to contain the coronavirus infection and stabilize socio-economic at macroeconomic and regional level and restore the economy of territorial systems, depending on the depth of the spread of infection and the level of economic damage caused.
-
Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.
Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.
Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.
Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.
World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.
It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.
Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.
The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"